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4. Experiments
4.1. Human motion modeling and forecasting

User study. We randomly sampled three seed motions from
each of the four activities (walking, eating, smoking, and
discussion), giving a total of 12 seed motions. We fore-
casted human motion from the seeds using S-RNN, LSTM-
3LR and ERD, resulting in total of 36 forecasted motions —
equally divided across algorithms and activities. We asked
five users to rate the forecasted motions on a Likert scale of
1 — 3, where a score of 1 is bad, 2 is neutral, and 3 is good.
The users were instructed to rate based on how human like
the forecasted motion appeared. In order to calibrate, the
users were first shown many examples of ground truth mo-
tion capture videos.

Figure | shows the number of examples that obtained
bad, neutral, and good scores for each algorithm. Ma-
jority of the motions generated by S-RNN were of high-
quality and resembled human like motion. On the other
hand, LSTM-3LR generated reasonable motions most of
the times, however they were not as good as the ground
truth. Finally, the motions forecasted by ERD were not hu-
man like for most of the aperiodic activities (eating, smok-
ing, and discussion). On the walking activity, all algorithms
were competitive and users mostly gave a score of 3 (good).
Hence, through the user study we validate that S-RNN gen-
erates most realistic human motions majority of the times.
Look at the supplementary video for more details.

Training S-RNN for motion forecasting. We closely fol-
low the training procedure by Fragkiadaki et al. [1]. We
cross-validate over the hyperparameters on the validation
set and set them to the following values:

e Back propagation through 100 time steps.
e Mini-batch size of 100 sequences.

e We use SGD and start with the step-size of 1072,
We decay the step-size by 0.1 when the training error
plateaus.

e We clip the L2-norm of gradient to 25.0, and clip each
dimension to [-5.0, 5.0]

e We gradually add Gaussian noise to the training data
following the schedule: at iterations {250, 500, 1000,
1300, 2000, 2500, 3300} we add noise with standard
deviation {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7}. As also
noted by Fragkiadaki et al. [1], adding noise is very
important during training in order to forecast motions
that lie on the manifold of human-like motions.

Figure 2 examines the test and train error with iterations.
Both S-RNN and ERD converge to similar training error,
however S-RNN generalizes better with a smaller test er-
ror for next step prediction. The number of parameters in
S-RNN are marginally more than ERD. S-RNN have more
LSTMs than ERD, but each LSTM in S-RNN is half the
size of the LSTMs used in ERD. For ERD we used the best
set of parameters described in [1]. There, the authors cross-
validated over model parameters. In the plot, the jump in
error around iteration 1500 corresponds to the decay in step
size. Due to addition of noise the test error of S-RNN ex-
hibits a small positive slope, but it always stays below ERD.

4.4. Driving maneuver anticipation

We now present S-RNN for another application which
involves anticipating maneuvers several seconds before they
happen. For example, anticipating a future lane change ma-
neuver several seconds before the wheel touches the lane
markings. This problem requires spatial and temporal rea-
soning of the driver, and the sensory observations from in-
side and outside of the car. Jain et al. [2] represent this prob-
lem with the st-graph shown in Figure 3c. They model the
st-graph as a probabilistic Bayesian network called AIO-
HMM. The st-graph represents the interactions between the
observations outside the vehicle (eg. the road features), the
driver’s maneuvers, and the observations inside the vehi-
cle (eg. the driver’s facial features). We model the same
st-graph with S-RNN architecture using the node and edge
features from Jain et al. [2].



Table 1: Maneuver Anticipation on 1100 miles of real-world driving data. S-RNN is derived from the st-graph shown in Figure 3c. Jain et al. [2] use the
same st-graph but models it in a probabilistic frame with AIO-HMM. The table shows average precision, recall and time-to-maneuver. Time-to-maneuver
is the interval between the time of algorithm’s prediction and the start of the maneuver. Algorithms are compared on the features from [2].

Turns Lane change All maneuvers
Time-to- Time-to- Time-to-
- (O] (¥ v v, [y 0
Method Pr (%) Re (%) maneuver (s) Pr (%) Re (%) maneuver (s) Pr (%) Re (%) maneuver (s)
SVM 64.7 47.2 2.40 73.7 57.8 2.40 43.7 37.7 1.20
AIO-HMM [2] 80.8 75.2 4.16 83.8 79.2 3.80 717.4 71.2 3.53
S-RNN w/o edgeRNN 75.2 75.3 3.68 85.4 86.0 3.53 78.0 71.1 3.15
(Ours) S-RNN 81.2 78.6 3.94 92.7 84.4 3.46 82.2 75.9 3.75
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Figure 1: User study with five users. Each user was shown 36
forecasted motions equally divided across four activities (walking,
eating, smoking, discussion) and three algorithms (S-RNN, ERD,
LSTM-3LR). The plot shows the number of bad, neutral, and good
motions forecasted by each algorithm.
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Figure 2: Train and test error. S-RNN generalizes better than
ERD with a smaller test error.

The nodeRNN models the driver, and the two edgeRNNs
model the interactions between the driver and the observa-
tions inside the vehicle, and the observations outside the
vehicle. The driver node is labeled with the future ma-
neuver and, the observation nodes do not carry any label.
The output of the driver nodeRNN is softmax probabili-
ties of the following five maneuvers: {Left lane change,
right lane change, left turn, right turn, straight driving}.
Our nodeRNN architecture is RNN(64)-softmax(5), and

edgeRNN is LSTM(64).

We train S-RNN on the features provided by Jain et
al. [2] on their 1100 miles of natural driving data set. The
algorithms are evaluated on their precision and recall in an-
ticipating maneuvers under the following three prediction
settings: (i) Lane change: algorithms only anticipate lane
changes. This setting is relevant for freeway driving; (ii)
Turns: algorithms only anticipate turns; and (iii) All ma-
neuvers: algorithms anticipate all five maneuvers. Table 1
shows the performance of different algorithms on this task.
S-RNN performs better than the previous state-of-the-art
AIO-HMM [2] in every setting. It improves the precision
by 5% and recall by 4% with predicting all five maneuvers.
Both AIO-HMM and S-RNN model the same st-graph but
using different techniques. The table also shows that the
performance decreases if we remove edgeRNNs and simply
feed the concatenation of edge features into the nodeRNN.
This emphasizes importance of the edgeRNNs, and the need
for separately modeling different kinds of edge interactions.
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