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Abstract. When robots work alongside humans for performing collab-
orative tasks, they need to be able to anticipate human’s future actions
and plan appropriate actions. The tasks we consider are performed in
contextually-rich environments containing objects, and there is a large
variation in the way humans perform these tasks. We use a graphical
model to represent the state-space, where we model the humans through
their low-level kinematics as well as their high-level intent, and model
their interactions with the objects through physically-grounded object
a↵ordances. This allows our model to anticipate a belief about possible
future human actions, and we model the human’s and robot’s behavior
through an MDP in this rich state-space. We further discuss that due
to perception errors and the limitations of the model, the human may
not take the optimal action and therefore we present robot’s anticipatory
planning with di↵erent behaviors of the human within the model’s scope.
In experiments on Cornell Activity Dataset, we show that our method
performs better than various baselines for collaborative planning.

Keywords: Collaborative task planning, Anticipation, Human activity
perception, Object a↵ordances, Human-robot interaction.

1 Introduction
Currently, robots are being incorporated into human workspaces where they
perform tasks with humans – assistive settings in nursing homes (e.g., [19]),
collaborative assembly line manufacturing (e.g., [32]), or in other outdoor ap-
plications. The challenge here is two-fold: the robots often have to operate in
contextually-rich environments, where they have to perform tasks involving ma-
nipulation of objects, and they have to work closely with humans performing the
same task (see Fig. 1).

Collaborative tasks are more challenging as compared to both reactive and
role-based tasks. In collaborative tasks, the goal of the robot is to perform actions
along side humans in order to achieve the goal of the task. For example, if the
task is to set the dinner table, the various actions involved are reaching for
the objects (e.g., plates, cups and spoons), and moving them to appropriate
locations on the table. The robot can perform any action in order to achieve the
goal as opposed to a role-based scenario where the robot has a pre-assigned role
of setting plates or cups, etc. It needs to plan its actions by taking into account
the actions of the human. In order to achieve this, there are three aspects we
need to address: (i) model the contextually-rich environment to reason about
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Fig. 1: Robot performing collaborative task with human: The human and the
robot are asked to follow a recipe – pour the ingredients in to the bowl and stir. At every
time step both the agents execute an action and change the state of the environment.
The robot needs to plan its actions by taking in to account what actions the human
would perform, where some human actions are more likely than the others based on
the human’s strategy. The challenge here is to model the rich environment context,
and the ambiguity in human’s actions.

what can be done and how, (ii) perceiving the human’s actions and anticipating
their future moves, and (iii) plan robot’s actions taking into account the inherent
uncertainty in the human actions.

In our previous works [21, 18, 19], we presented a perception algorithm for
modeling the spatio-temporal relations of activities which allows us to detect the
past actions and anticipate the future actions. However, the robotic responses
were only reactive and hand-designed. In related works, Nikolaidis and Shah
[33] consider collaboration for assembling tasks with pre-assigned roles for hu-
man and robot, where they do not explicitly model anticipation. Mainprice and
Berenson [27] anticipate human actions to minimize penetration of robot in hu-
man workspace and Uyanik et al. [44] introduced social-a↵ordances for planning.
In comparison, we look at a more generic collaborative task planning problem,
where the role of robot and human are indistinguishable.

In this paper, we formulate the collaborative task completion problem as
a two-agent planning problem, where we model the ambiguities in perception
as well as in the human’s choice of actions. Unlike planning for multi-robot
scenarios, where one has control over all agent behaviors [42, 3, 14], the human
does not perform his actions according to a fixed strategy. Humans tend to follow
their habits when possible in a familiar environment, but will also try to adapt
in response to the other agents in the environment. Therefore, our problem of
robot-human collaborative planning can be viewed as a two-agent cooperative
Markov game, where the goal of each game is to complete a pre-specified activity
in a given environment. We aim to learn the optimal policy for the robot while
taking into account the various human behaviors or strategies.

In detail, we represent the contextually rich environment in terms of the ob-
ject a↵ordances and incorporate them as the states of our collaborative Markov
decision process. We propose a distributed Q-learning algorithm to learn the
policies for both the agents. We model the human’s actions in several ways—
taking the ✏-optimal action according to the MDP model, taking actions based
on past habits as seen in a RGB-D video dataset, and taking appropriate actions
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by adapting to the environment and robot actions. Each human behavior results
in exploring a di↵erent subspace of states by the robot, resulting in a di↵erent
robot policy as shown in Fig. 1. Therefore, during learning we first estimate how
adaptive the human would be in the given environment and then jointly estimate
the robot and human policies.

We test our approach on five high-level activities in 60 environments from
the CAD-250 dataset. We evaluate our algorithm both on the dataset as well as
in a user study. We predict the current object a↵ordances from RGB-D videos
and use our algorithm to plan appropriate actions by the robot to be performed
along with the human. We compare our approach against the baselines on several
metrics, and find that our approach performs collaborative planning for the
tasks better. Specifically, our robot policy learnt with an adaptive human model
achieves the highest savings in task completion time of 36.5% as compared to
13.8% obtained when the human agent is not modeled explicitly.

2 Related Work
Our approach of anticipatory planning has three main aspects: human-robot in-
teraction, perception in contextually-rich environments, and planning algorithms
for finding the best action for the robot to perform. We now review the relevant
works specific to these di↵erent aspects in more detail.

Human-robot collaboration. Many tasks are parallelizable or involve
complex interactions with objects in the environment, and can be more e�ciently
completed if human and robot collaborate. Some recent works have addressed
this problem of collaboration in human-robot teams. Nikolaidis et al. [33] con-
sider collaboration for assembling tasks with pre-assigned roles for human and
robot. Mainprice et al. [27] anticipates human actions to minimize penetration of
robot in human workspace. Uyanik et al. [44] introduced social-a↵ordance where
robot’s action depends on help from human. As opposed to them, in our work
the role of robot and human are indistinguishable, and for task completion they
interact with multiple objects performing di↵erent activities.

Another aspect of human-robot collaboration is the interaction between the
agents and their compatibility. Some works [28, 38, 37, 29] encode the compati-
bility in the form of constraints on the distance of robot from user, the visibility
of robot and user arm comfort. Strabala et al. [39] and Cakmak et al. [5] consider
handover tasks wherein robot reason about its location w.r.t. human and object
handover configuration. We di↵er from these in that, in our tasks both human
and robot are active participants and collaborate towards a common goal.

A↵ordances. The concept of a↵ordances was described by J.J. Gibson [8]
as the “Action possibilities in the environment in relation to the action capabil-
ities of an actor”. A↵ordances have been widely used in robotics for obtaining a
functional understanding of the scene as well as enabling robots to interact and
manipulate objects. These works range from predicting opportunities for inter-
action with an object by using only visual cues [40, 9, 2] to observing e↵ects of
exploratory behaviors [31, 36, 30, 10, 13]. For instance, Sun et al. [40] proposed
a probabilistic graphical model that leverages visual object categorization for
learning a↵ordances. Katz et al. [13] propose a framework for learning to manip-
ulate objects in clutter by choosing robot actions based on object a↵ordances.
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There is some recent work in interpreting human actions and interaction
with objects [25, 1, 17] in context of learning to perform actions from demon-
strations. Lopes et al. [25] use context from objects in terms of possible grasp
a↵ordances to focus the attention of their recognition system. Aksoy et al. [1]
construct a dynamic graph sequence of tracked image segments from human
demonstrations and this representation is used by the robot for manipulating
objects. A↵ordances have also been used in planning (e.g., [26, 43]). In this
work, we use object a↵ordances to represent the state of the environment, and
these a↵ordances evolve as the objects are used in an activity [20].
Multi-agent Reinforcement Learning. The multi-agent reinforcement learn-
ing (MARL) literature focus on multiple autonomous agents learning how to
solve dynamic tasks online. Besides single-agent reinforcement learning, MARL
has strong connections with game theory, evolutionary computation, and op-
timization theory. We refer the reader to [4] for a survey of the works in this
area and discuss some relevant ideas here. Many multi-agent algorithms exist
for di↵erent tasks which range from fully cooperative setting [22, 16, 48] to fully
competitive setting [23, 15]. When collaborating with humans, the robot needs to
be aware of the human’s behavior, which might not always be fully cooperative.

Adaptation of agents has been studied previously [41, 34, 46], where an
agent’s adaptation depends on the degree of awareness of other agent’s behav-
ior maintained by the learning algorithms. These algorithms use some form of
opponent modeling to keep track of the other agent’s policies [6, 11]. There is
a tradeo↵ between the stability (convergence) of the algorithms and the degree
of adaptability. We build upon some of these ideas and propose a two-agent
reinforcement learning algorithm, which models the various human behaviors
allowing the robot to learn an adaptive policy.

3 Approach
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Fig. 2: System Overview.

Our goal is to learn which actions a
robot can perform in order to collab-
orate with the human and assist in
the task. As illustrated in Fig. 2, we
first learn the spatio-temporal struc-
ture present in activities using a con-
ditional random field (CRF) from
RGBD videos of people performing
these activities. We model the sub-activities and a↵ordances of the objects, how
they change over time, and how they relate to each other (for details see [21]).
We then learn a Q-value function in simulation using the learnt activity and
a↵ordance models. When working with the human, the robot first estimates the
state of the environment by detecting the object a↵ordances and human actions,
and then chooses an appropriate action and executes it.

In detail, we consider a robot r working with a human h in an environment
having objects O. The goal is to learn a policy for the robot, ⇡r, which maps the
current environment to an action. We formulate the collaborative task planning
problem as a Markov decision process (MDP) with two agents – the human and
the robot. We define the following:
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              Policy 
 

state s1: action < Human: reach cup, Robot: reach spoon>
state s2: action < Human: pour to bowl, Robot: stir in bowl> !
state s3: action < Human: place cup , Robot: place spoon> 

  .!
! ! !.!

state s7: action < Human: reach bottle, Robot: reach cup>
state s8: action < Human: pour to bowl, Robot: pour to bowl> !
state s9: action < Human: place bottle, Robot: place cup>

  .!
! ! !.!

 
$
 $Fig. 3: Collaborative planning by the robot. In order to collaborate with the

human on a recipe following task, the robot learns the activity model from RGB-D
videos of human preparing a recipe (left), represents the environment via a↵ordances
and uses our planning algorithm (middle) to generate a policy for jointly performing
the activity with the human (right).

– State Space S: Let st = {s1
t

, ..., sn
t

} denote the state of the environment,
where si

t

denotes the state of the ith object at time t and n denotes the
number of objects.

– Action Space A: Let a
t

= hah
t

, ar
t

i denote the joint action at time t, where
ah
t

and ar
t

denote the human and robot actions respectively.
– Robot’s policy ⇡r: S⇥Ar ! [0, 1], where Ar denotes the set of possible robot

actions. ⇡r(s, ar) specifies the probability of choosing action ar in state s.
We address the following challenging aspects of this problem: (i) Defining

an e�cient state-action representation that captures the contextually rich en-
vironments for performing complex activities, (ii) Learning the task model for
each activity that specifies the e↵ect of actions on the environment and also
which actions need to be executed for completing the task, and (iii) Modeling
the human agent’s actions for learning the robot’s policy.
3.1 Collaborative Markov Decision Processes

We use RGB-D videos of a single human performing the activities to define the
state-action representation and learn the task model of the activities.1 Once we
have the set of states, set of actions and the task model, we can solve the MDP
using dynamic programming techniques [35]. However, with large joint state-
action space, computing the optimal policy is computationally very expensive
and therefore, we take the model-free approach of Q-learning and learn the Q-
functions o✏ine with the help of the learnt task models. When collaborating with
humans, the robot choses actions greedily with respect to its learnt Q-function.
We fix the robot’s policy after the o✏ine learning, however, one can also further
refine the Q-functions on-the-fly while working with humans in the real world.
We now describe the details of our collaborative MDP algorithm.

State-Action Representation: We represent the environment in terms of the
object a↵ordances, which leads to an e�cient state action space for planning.
For example in Fig. 3, the state of the environment is represented in terms of
the a↵ordance labels of the objects in the scene, i.e., the bowl is stirrable, the
spoon is the stirrer and the rest of the objects are stationary. The stir action
corresponds to the temporal motion trajectory of the spoon from the grounded
stir a↵ordance. On performing the stir action, the spoon becomes placeable, thus
changing the state of the environment.

1 Such data is easier to collect for a wide variety of activities in a variety of environ-
ments [45, 20] as compared to collecting data of humans working with robots.
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Algorithm 1 RUN-EPISODE (Q,⇡h,⇡r)
INPUT: State space S, Action space A

1: Initialize environment to start state; R 0; i 0;
2: loop
3: if goal state then
4: return Q-functions, R
5: end if
6: Sample ah from ⇡h and ar from ⇡r

7: Take action (ah, ar) and observe r, s0

8: Update Q-functions as in Eq. 2
9: R R+ �i ⇤ r
10: i i+ 1
11: end loop

Task Model: State Transitions and Rewards. The a↵ordance-based repre-
sentation of the environment allows for factored representation of the transition
and reward functions. That is, it is su�cient to specify the state transitions with
respect to only a subset of a↵ordances that are e↵ected by an action. For exam-
ple, a move action would change only the state of the movable object where as
a pour action would change the state of the pourable and the pour-to objects.
We assume that each action can be completed in one time step and hence given
the nature of activities and a↵ordances, the state transitions are deterministic.
That is, on performing a valid action, the a↵ordance of the object changes to
another fixed a↵ordance. The reward function allows us specify valid actions at
any given a↵ordance state, where all valid actions receive a fixed positive reward
and non-valid actions will incur a negative cost. We also learn this task model
(i.e., transition and the reward functions) from the labeled RGB-D videos of a
human performing the activities.

Learning Robot Policy. Given the deterministic nature of the state transi-
tions, we use the distributed Q-learning [22] algorithm to learn the local value
functions qh

t

(s, a) and qr
t

(s, a) for the human and the robot respectively. Each
agent assumes that other agents are acting optimally and only updates their
local Q- functions when it results in an increase. This ensures that the local Q-
value always captures the maximum of the joint-action Q-values. Therefore at
each iteration, the local Q-functions are updated as in Eq. 1 while maintaining
the invariants in Eq. 2.
qj
t+1(st, a

j

t

) = max{qj
t

(s
t

, aj
t

), R(s
t

, ah
t

, ar
t

) + � max
a2Aj

qj
t

(s
t+1, a)}, j 2 {r, h} (1)

qr
t

(s, a) = max
a

h2Ah

Q
t

(s, ah, ar = a); qh
t

(s, a) = max
a

r2Ar

Q
t

(s, ah = a, ar) (2)

Our collaborative distributed Q-learning algorithm is summarized in Algo-
rithm 1. Here, an episode is defined as the sequence of actions performed by the
robot and human from the initial configuration to the goal configuration.

4 Models of Human Behavior
Many studies on human behavior have shown that there are primarily two sys-
tems which drive the way humans think – the first being fast, intuitive and
emotional; and the second system which is slower, more deliberative and logical
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[12]. This also applies to our problem of performing collaborative tasks, where
humans can either think fast and perform activities following their habits or
think more carefully about collaborating by taking into account what the robot
can do. Therefore, the actions chosen by the human can range from fully coop-
erative, when humans are thinking for collaboration, to somewhat adversarial
when their habits conflict with the robot’s actions. Modeling these various types
of human behavior becomes extremely important for collaboration.

Previous works in game theory literature study such senarios in the setting
of general sum Markov games, where the types of opponent behaviors have been
roughly classified into fixed strategies or best-response strategies [24]. In the
fixed strategy case, the opponent always executes a fixed unknown policy and Q-
learning finds the best response with respect to the fixed opponent. In the second
case, it is assumed that the opponent adapts and chooses the best response so
that it is mutually beneficial to both agents. Following these ideas, we model the
following behaviors of a human agent:

– Habit-following human. In this model, we consider the perceptual data
of the human from RGB-D videos, and assume that the human follows close
to what he has done in the training videos. This is a fixed strategy behavior,
where the human has a preferred way of performing activities and follows the
same approach even when working with a robot. Let D be the set of activity
videos and let c(s, a) be the number of times the human performed action
a when in state s in D. The policy followed by a habit-following human,
⇡h

d

(s, a), is defined as

⇡h

d

(s, a
i

) =

8
<

:

c(s, a
i

)/
P

a

c(s, a) if s 2 D
1/n if s /2 D
0 otherwise

where n is the number of possible actions in state s.
– ✏-optimal human. In this model, we assume that the human takes the

best action according to the value function most of the time, but makes
a random choice ✏ fraction of the time. Here, human chooses a response
that is mutually beneficial most of the time, according to the value function
learnt so far.2 This is equivalent to the ✏-greedy exploration strategy which
was shown to have better convergence properties [47] compared to always
choosing the action greedily. The human policy is defined as

2 The ✏-optimal human behavior can di↵er from the habit-following human behavior,
even when the reward model used to learn the value function for ✏-optimal human
is extracted from the the same data as the actions of habit-following human. There
are two reasons for this: (i) The test environment is not present in the training
data, and therefore, the reward function learnt from the training environments might
not capture all valid ways of performing the activity in the test environment. This
would lead to di↵erence in what a human might do in this scenario and the policy
learnt from an incomplete reward function; (ii) Humans can follow a di↵erent reward
model when working alone as compared to when collaborating with others. Since we
have adapted the reward function learnt from a single-agent scenario to a two-agent
scenario, it is possible for the optimal-human policy to deviate from the habit-
following human.
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Algorithm 2 Learn Robot Policy
INPUT: State space S , Action space A, Data D

1: Initialize ⇡h and ⇡r uniformly
2: Q 0; ⌘  0.5
3: while burn-in period do
4: Sample s ⇠ Bern(⌘); s 2 {d, ✏}
5: Update ⇡h

s

6: Q,R RUN-EPISODE(Q,⇡h
s ,⇡

r)
7: end while
8: Update ⌘
9: loop
10: Update ⇡h

a using Eq. 3
11: Q,R RUN-EPISODE(Q,⇡h

a ,⇡
r)

12: end loop
13: return Robot’s Policy ⇡r

⇡h

✏

(s, a
i

) =

⇢
(1� ✏) + (✏/n) if a

i

= argmax
a

(qh(s, a))
✏/n otherwise

– Adaptive human. In the real world, when collaborating, humans usually
adapt to other agents while trying to maintain their preferences or habits.
That is, they follow their habits when possible in familiar situations, but
when faced with new situations while working with the robot, they adapt
and try to perform the action that is beneficial to both for completing the
activity. We model this behavior by computing the probability of the human
choosing one of the above two behaviors and define the human policy as

⇡h

a

(s, a) = ⌘ ⇤ ⇡h

d

(s, a) + (1� ⌘) ⇤ ⇡h

✏

(s, a); 8s, a (3)

where ⌘ denotes the probability of the human to follow habits.

During test time, when the robot is collaborating with the human on a new
task, it should choose actions from the policy which is learnt with matching
human behavior. One approach is to assume that the opponent type is known
and fixed, and use the policy learnt with that type when executing the activ-
ities. Some works try to identify the opponents strategy on the fly and adapt
accordingly. Such an approach requires the robot to work with humans to per-
form activities for a long time, which is not very practical in most scenarios.
In contrast to these approaches, we present an algorithm (Algorithm 2) which
adaptively selects the human’s actions for exploration during the learning phase.

We need to estimate the Q-values along with the value of ⌘, which is the
probability with which the human follows his habits. This probability depends
on the familiarity of the environment to the human as well as the cost of deviating
from the optimal policy. Therefore, we model this probability as a function of the
joint reward obtained when the human follows one of the two extreme behaviors
– habit-following and ✏-optimal, throughout the activity. Therefore, during an
initial burn-in period, we sample the behavior uniformly and fix the behavior
throughout an episode and learn the Q-values. We maintain a score for each of the
behaviors, denoted by w

d

and w
✏

for the habit-following and ✏-optimal behaviors
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(b) ✏-optimal Human.
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(c) Adaptive Human.

Fig. 4: Illustration of policies learnt with di↵erent human behaviors: Each
figure shows the learnt probability distributions of the various possible actions at the
start state of the following recipe activity. Blue and red bars represent the probability
of choosing the corresponding actions by the human and robot respectively.

respectively. At the end of Q-learning episode, we compute the normalized joint
reward and update the corresponding score value as in Eq. 4.

R̂ 
R� r

min

1��

r

max

1��

� r

min

1��

; w  w + ↵(R̂� w) (4)

where r
max

and r
min

are the maximum and minimum reward at any given time,
respectively, � is the discount factor and ↵ is the learning rate. At the end of
the burn-in period we compute the value of ⌘ as:

⌘  e(wd

)

e(wd

) + e(w✏

)
(5)

We then continue learning the Q-values for the adaptive human by updating the
human policy according to Eq. 3 using the estimated value of ⌘.

E↵ect of the human behavior on the learned robot policies. Fig. 4 illus-
trates di↵erent human and robot policies corresponding to the di↵erent possible
human behaviors we consider. Here, we consider an environment in which there
are two cups, a bowl and a spoon, and the robot can only reach the cups and
the bowl where as the human can reach all objects. The goal of the activity is
to follow a recipe involving transfer of the ingredients from the cups to the bowl
and mix them the spoon. In the training videos, at the beginning of the activity,
the human reaches the first cup more often than the second cup as shown by the
policy for the start state in Fig. 4-(a). The corresponding learned robot policy
is to not do any action as reaching for a cup could result in a conflict.

Instead of following habits, if the human tries to optimizes for the joint
reward, he would reach for the spoon and let the robot use the cups, which
allows them to perform the activity together and complete it sooner. Fig. 4-(b)
shows the policies corresponding to the ✏-optimal human behavior. Given this
environment, following habits turns out to be less rewarding and therefore a
human would try to adapt more. This is reflected in the estimated value of ⌘
which is low for this particular scenario. Fig. 4-(c) shows our learnt adaptive

human policy and the corresponding robot policy. Note that even small changes
in human behavior can result in significant changes in the robot’s actions.

5 Experiments
We test our proposed algorithm and other baseline methods for generating col-
laborative plans for several household activities. We evaluate the learnt robot
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Table 1: Collaborative Planning Evaluation. Metrics computed for the collabora-
tive plans generated on our RGB-D dataset.

Model
% time saving

% conflicts
Recipe Setting Cleaning Loading Overall

Human Expert Plans 36.8 53.1 16.4 42.4 37.2 0
Chance 3.3 10.5 -33.1 23.7 1.1 3.7
Mental-model MDP[33] -2.6 30.4 -5.1 32.3 13.8 6.4
Our Model – ✏-optimal human 27.5 45.6 18.3 30.8 31.2 13.5
Our Model – habit following human 28.4 48.1 18.6 41.4 33.4 11.9
Our Model – adaptive human 32.8 48.5 22.9 41.9 36.5 13.7

policies on both an activity dataset as well as in interaction with real humans.
In this section we describe the data, experimental setup and the results.

Data: In order to evaluate our a↵ordance and anticipatory planning models we
expanded the CAD-120 dataset [21] to CAD-250 dataset, which has 130 addi-
tional RGB-D activity videos which contain more interesting object a↵ordances
and activities which allow human-robot collaboration. The sub-activities in the
CAD-250 dataset include {moving, stirring, pouring, drinking, cutting, eating,

cleaning, reading, answering phone, wearing, exercising, hammering, measuring}
and the corresponding a↵ordances are {movable, stirrable, pourable, pourto,

drinkable, cuttable, edible, cleanable, cleaner, readable, hearable, wearable, exer-

cisable, hammer, hammerable, measurer, measurable}.
We evaluated our planning algorithm on 60 RGB-D videos from the CAD-250

dataset which allow for collaboration. These activities include two recipe making

tasks, setting dinner table, cleaning house, and loading shelves. These activities
were performed by four subjects where each high-level activity is performed
three times by each subject in a di↵erent environment. For each activity video,
we labeled the sub-activities and the object a↵ordances of the objects used in
the activity. We will make this dataset publicly available.

Baselines: We compare our method against the following baselines:

– Human Expert: A human expert manually designed collaborative plans
for each activity in the dataset.

– Chance: This algorithm chooses actions uniformly at random from the set
of possible actions.

– Mental-model MDP [33]: We follow Nikolaidis et al. and define a MDP to
formulate the robot’s mental model [33]. In this approach, the human actions
are incorporated into the state transition function and the policy specifies
only the robot’s actions. Therefore, we use the same state and action spaces
and reward function as described in our approach with only one agent and
compute the transition function from the state action sequences from the
training data. Note that in our adaptation of [33] we fix the transition func-
tion learned from the data and do not perform any cross training iterations
as the roles are fully exchangeable in our collaborative setting.

5.1 Evaluation on Data
We evaluate the generated collaborative plans on the following two metrics: (i)
Percentage time saving: The percentage of savings in time for task completion is
computed as n

h

�n

c

n

h

⇤100, where n
h

denotes the number of time steps taken if only
human performs the task and n

c

denote the number of steps to task completion
following the collaborative plan. (ii) Percentage conflicts: The percentage of time
steps robot’s chosen action conflicted with that of the human.
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For each activity video in the dataset, we give the environment extracted
from the first frame and the goal state as input to the planning algorithm. We
perform leave-one-out cross-validation and use the rest of the activity videos for
learning the task model and the robot policies as described in Section 3.1 and
Section 4. The sequence of human actions are taken form the test video and
executed together with the robot actions specified by the learnt robot policy.
Table 1 shows the results averaged for each high-level activity as well as for all
activities in the dataset.

As can be seen in Table 1, our algorithm allows for more collaboration be-
tween human and the robot, resulting in higher savings in the time required for
task completion compared to the baseline algorithms. When the robot chooses
actions uniformly at random (Chance baseline), it sometimes chooses action se-
quences that help in achieving the goal sooner, but can also perform undesirable
actions requiring additional time to complete the activity. Therefore, on average
it does not result in any savings in the execution time. These results show that
modeling the human actions along with the contextually rich environments is
very important for collaborative planning.

5.2 User Study
Experiment setup. We performed an user study with five subjects to evaluate
the learned robot policies. We considered two high-level activities – setting table

andmaking recipe, and four di↵erent environments for each activity. The subjects
were asked to work with the robot to complete the tasks in a simulator. We
re-created the environments in OpenRAVE [7] and provided an interface to the
subjects to select an action they wish to execute. At every time instant, the users
were shown the current state of the environment, and were asked to choose an
action. The robot also selects an action based on the current state using its
learned policy. Both the human and robot actions are then executed in the
simulator. After completing each task, the users were asked to rate the following
statements on Likert scale from 1 (strongly disagree) to 5 (strongly agree).

(a) The robot was collaborative and helped in the activity.
(b) The robot did the right thing at the right time.
(c) I am satisfied working with the robot.
(d) I will work with this robot again in future.

In this study, we compared the robot policies generated by the mental-model
MDP [33] and our method learned with the three human behaviors. Therefore,
every user performed each task four times, resulting in a total of 640 ratings.

Results. Fig. 5 shows the comparison of the user ratings for the four di↵erent
robot policies on the four criteria mentioned above. Users rated the robot trained
with our collaborative MDP model significantly higher (p < 0.001) than the
robot using the mental-model MDP on all four criteria. For the robot policies
learnt with our collaborative MDP using di↵erent human behaviors, when asked
if they thought the robot did the right action at the right time, the users rated
the robot trained with adaptive human higher than others (p = 0.08). For other
criteria, there is no significant di↵erence in the user ratings, however, as can be
seen in Fig. 5, there is a slight preference for the robot trained with adaptive
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(a) The robot was collaborative and helped. (b) The robot did the right things.

(c) I am satisfied working with the robot. (d) I will work with this robot again.

Fig. 5: User Study Results: The subjects collaborated with the robot on two di↵erent
tasks in a total of eight di↵erent activities. They rated their experience based on four
di↵erent criteria. The plots (a)-(d) show the comparison of the user ratings for four
di↵erent robot policies – mental-model MDP [33], and our collaborative MDP trained
with ✏-optimal human, habit-following human and adaptive human.

Table 2: Collaborative Planning Evaluation for User Study. Metrics computed
for the collaborative plans generated when working with humans during the user study.

Model
% time saving

% conflicts
Recipe Setting Overall

Mental-model MDP[33] -0.9 13.9 6.5 2.7
Our Model – ✏-optimal human 34.3 46.5 40.4 4.6
Our Model – habit following human 16.5 48.9 32.7 4.4
Our Model – adaptive human 38.2 52.7 45.5 4.6

human compared to others. We also compute the % saving in execution time
and the % of conflicts for the collaborative plans generated in the user study.
Table 2 summarizes these results. The users completed the tasks faster when
working with robot trained with the adaptive human as compared to others.

5.3 Robot Experiment

Fig. 6: Robot and human col-
laborating to prepare a recipe.

We have also used the learned robot pol-
icy on our Kodiak (PR2) robot to work
with a human on a following recipe task.
Fig. 6 shows the robot collaborating with hu-
man to prepare a recipe, where the robot
is executing the pour action as the hu-
man is stirring, based on its learnt pol-
icy. Videos showing the human and robot
collaborating are available at: http://pr.cs.cornell.edu/collaborativeplanning/.

5.4 Discussion

We discuss the results of the evaluation on our dataset as well as the user study
in the light of the following questions.
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Fig. 7: Joint reward received during Q-learning. Plots showing the joint reward
as a function of the number of Q-learning episodes for three di↵erent test environments
of setting table activity.

What is the advantage of our collaborative MDP model over a single-
agent MDP model? The mental-model MDP doesn’t model the human ex-
plicitly as an agent but incorporates the e↵ect of human actions in to the state
transition probabilities. We observe a large variation in the performance of the
mental-model MDP [33] baseline across the types of activities – it performs well
on the setting table and loading shelf tasks, but takes longer to complete the
recipe and cleaning tasks. It is interesting to note that the setting table and
loading shelf tasks have a smaller action space as compared to the cleaning and
recipe tasks. Therefore, given limited training data, the mental-model MDP is
sensitive to the estimated state transition probabilities and fails when the ac-
tion space is large. On the other hand, our collaborative MDP approach, which
models the actions of human explicitly, overcomes this problem and performs
significantly better on all tasks.

How important is modeling human behavior for collaboration? As hu-
mans tend to have specific preferences for executing tasks, the robot policy learnt
with habit-following human strategy, which incorporates these preferences into
planning, achieves an additional 2.2% saving in time compared to the ✏-optimal

human. However, when tested with new humans, whose habits were never seen
in the training data, the robot policy learnt with ✏-optimal human performs bet-
ter (see Table 2). Modeling human as an adaptive agent always performs better
and results in more collaboration – increasing the savings in the task completion
time by 3.1% when working with a familiar human (human seen in the training
data) and by 5.1% when working with a new human.

We also study how the joint reward evolves over the Q-learning episodes
during training. At the end of each episode, we use the learned robot policy to
perform the activity with a human following the policy ⇡h

d

corresponding to the
test environment. Fig. 7 shows the the joint reward received by the human and
the robot as a function of the number of training episodes for three test envi-
ronments, when training with the three human behaviors described in Section 4.
We see that the policy learnt with the adaptive human converges to the highest
joint reward much faster in most cases. However, in some cases (Fig. 7-right)
the policy learnt with the adaptive human performs sub-optimally, due to the
incorrect estimation of the adaptation probability.

How often does the robot conflict with human? The savings in task
completion time increase as a result of the robot’s increased participation in the
task. This also leads to an increase in the % of conflicts between the robot’s and



the human’s actions. However, our model learnt with the habit-following human

strategy reduces the % of conflicts compared to other baselines as it models the
human’s preferences. The number of conflicts again increase in case of adaptive
human due to increased participation of the robot in the activity. When a conflict
occurs, the preference is given to the human and the robot stops executing the
action and chooses a new action in the next time step. In our current model we
prefer plans with increased collaboration and do not penalize conflicts heavily.
However, it is possible to modify the reward function to incorporate this, and
we plan to explore this in future work.

6 Conclusion
In this work, we considered the problem of anticipatory planning for human
robot teams, for enabling robots to work along side humans in contextually rich
environments to accomplish complex tasks. We proposed a two agent collabo-
rative MDP model and learn robot policies by taking into account the actions
that can be performed by the human. We represented the contextually rich en-
vironments in terms of the object a↵ordances and learn the activity model from
RGB-D videos of a human performing the activities. We used this learned task
model in a distributed Q-learning algorithm to learn the robot policy for a given
new environment. We model the di↵erent possible human behaviors – taking
the ✏-optimal action according to the MDP model, taking actions based on past
habits, and taking appropriate actions by adapting to the environment and robot
actions. We tested our collaborative MDP model on the activity dataset as well
as while directly interacting with humans in a user study. We show that ex-
plicitly modeling the human actions in the MDP formulation results in learning
better robot policies. We also showed that changes in the human behavior can
lead to significant changes in desirable robot actions. Therefore, modeling human
behavior is essential for collaborative planning.

Bibliography
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