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ABSTRACT
Multiple Kernel Learning (MKL) aims to learn the kernel in
an SVM from training data. Many MKL formulations have
been proposed and some have proved effective in certain
applications. Nevertheless, as MKL is a nascent field, many
more formulations need to be developed to generalize across
domains and meet the challenges of real world applications.
However, each MKL formulation typically necessitates the
development of a specialized optimization algorithm. The
lack of an efficient, general purpose optimizer capable of
handling a wide range of formulations presents a significant
challenge to those looking to take MKL out of the lab and
into the real world.
This problem was somewhat alleviated by the develop-

ment of the Generalized Multiple Kernel Learning (GMKL)
formulation which admits fairly general kernel parameteriza-
tions and regularizers subject to mild constraints. However,
the projected gradient descent GMKL optimizer is ineffi-
cient as the computation of the step size and a reasonably
accurate objective function value or gradient direction are
all expensive. We overcome these limitations by develop-
ing a Spectral Projected Gradient (SPG) descent optimizer
which: a) takes into account second order information in
selecting step sizes; b) employs a non-monotone step size
selection criterion requiring fewer function evaluations; c) is
robust to gradient noise, and d) can take quick steps when
far away from the optimum.
We show that our proposed SPG-GMKL optimizer can be

an order of magnitude faster than projected gradient descent
on even small and medium sized datasets. In some cases,
SPG-GMKL can even outperform state-of-the-art special-
ized optimization algorithms developed for a single MKL for-
mulation. Furthermore, we demonstrate that SPG-GMKL
can scale well beyond gradient descent to large problems in-
volving a million kernels or half a million data points. Our
code and implementation are available publically.
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1. INTRODUCTION
Support Vector Machines (SVMs) have become ubiquitous

in diverse areas ranging from computer vision to natural lan-
guage processing to bioinformatics. One of the reasons for
their widespread adoption is the availability of general pur-
pose, efficient optimizers capable of handling various SVM
formulations as demanded by real world applications.

The success of non-linear SVMs also depends on the choice
of a good kernel. Multiple Kernel Learning (MKL) tech-
niques aim to learn such a kernel from training data often
as a combination of given base kernels. MKL can be used for
various tasks such as learning a similarity measure tailored
to the given application, heterogeneous feature combination
and learning models with sparse structures. For instance,
MKL techniques have yielded state-of-the-art results on very
challenging object recognition [22] and object detection [30]
problems in computer vision. They have also yielded supe-
rior results as compared to many state-of-the-art filter and
wrapper methods for feature selection [28]. However, MKL
techniques have not proved to be as popular as the baseline
SVMs upon which they hope to improve.

The primary reason for this is that MKL is still a nascent
field and, while a few formulations have shown promising
results in certain contexts, many more need to be devel-
oped that are robust to over fitting and generalize across
domains. At the same time, existing formulations need to
be tried out on many real world applications in order to de-
termine regimes in which they perform well. Unfortunately,
there does not exist an efficient, general purpose optimizer
which gives practitioners the flexibility to quickly prototype
novel MKL formulations or try out existing ones on large
scale applications. As things stand, the practitioner faces
the significant challenge of having to come up with a differ-
ent optimization technique for every novel MKL formulation
that she might wish to explore.

This problem was somewhat alleviated by the develop-
ment of the Generalized Multiple Kernel Learning (GMKL)



formulation [28]. The formulation allows learning fairly gen-
eral kernel parameterizations, including linear and non-linear
kernel combinations, subject to general regularization. The
only restriction that is placed on the kernel and regularizer
is that their derivative with respect to the kernel param-
eters must exist and be jointly continuous with the SVM
dual variables α. Most of the kernel learning formulations
proposed in the literature satisfy these constraints.
However, the general purpose, projected gradient descent

based GMKL optimizer is not efficient and doesn’t scale well.
In particular, it has two significant shortcomings. First, the
gradient descent step size is calculated via the Armijo rule
to guarantee convergence. This necessitates the solving of
many expensive, single kernel SVMs on the entire data set
in order to take a single step. Second, the objective function
value and the gradient descent direction are also obtained by
solving an SVM. To avoid noise in these estimates the SVM
Quadratic program (QP) has to be solved to a very high
precision. Unfortunately, high precision solvers don’t scale
beyond toy problems, while large scale specialized SVM QP
solvers based on chunking and decomposition [6] typically
produce low precision results. Optimizing GMKL via pro-
jected gradient descent can thus be significantly slower than
solving a single SVM.
Our objective, in this paper, is to speed up GMKL op-

timization by an order of magnitude in many cases. We
achieve this by carefully designing an alternative optimizer
based on Spectral Projected Gradient (SPG) descent [5].
SPG is a well known technique in the optimization commu-
nity. Our contribution is to adapt it for the GMKL problem.
Towards this end, we use a non-monotone line search crite-
rion which allows the objective function to increase once in a
while rather than strictly decrease at each step. This allows
us to accept initial step size proposals based on the spectral
step length, in many cases even the first, whereas gradient
descent would need to try out many step sizes before accept-
ing one that satisfies the Armijo rule. SPG steps are thus
much quicker as they require fewer objective function and
SVM evaluations.
We also engineer SPG to be more robust to the objec-

tive function and gradient noise encountered in large scale
GMKL problems. Gradient descent will often get stuck due
to inaccurate gradient computation. Only miniscule step
sizes will satisfy the Armijo rule since the gradient is point-
ing in the wrong direction and gradient descent will either
time out or take many small steps before recovering. SPG,
on the other hand, can recover much faster due to the non-
monotone line search criterion. We further exploit this prop-
erty by deliberately computing objective function values and
gradients at low precision when we are far away from the op-
timum. This allows our initial steps to be much quicker than
gradient descent’s. As the optimum is approached, we auto-
matically increase the precision of the objective function and
gradient computation according to a schedule based on the
duality gap and the projected gradient. In many cases, due
to this effective scheduling, we need to solve SVMs with a
precision of only 10−1 at the beginning and at most 10−3 to-
wards the end. On the other hand, we found that projected
gradient descent needed to solve SVMs with a precision of
10−6 from the very start in order to converge.
We carried out extensive experiments comparing the per-

formance of our proposed SPG optimizer to projected gra-
dient descent . We observed that SPG was much faster

on even small data sets, optimizing GMKL in a matter of
seconds, while gradient descent often struggled to converge.
Furthermore, SPG scaled well to large data sets where gradi-
ent descent based optimization was infeasible. For instance,
without using any parallelization, we were able to train on
the Sonar data set with a million kernels and on Covertype
with over half a million data points. Note that Covertype
is one of the largest data sets on which a single kernel SVM
can be trained without parallelization and that our train-
ing time was much the same as that of a single SVM with
a kernel defined to be the uniformly weighted sum of the
given base kernels. In contrast, sequential MKL techniques
proposed in the literature have mostly reported results on
thousands of kernels or data points (with the exception of
SMO-MKL [31]). Finally, in some cases, SPG even outper-
formed state-of-the-art specialized optimizers designed for a
specific MKL formulation. Thus, not only can SPG han-
dle diverse MKL formulations it is also the most efficient
optimizer for many of them.

We have implemented SPG in C and use LibSVM [6] as
the inner SVM solver. Our implementation builds on top
of the LibSVM code base. Our code is easy to modify and
new kernel parameterizations and regularizers can readily
be plugged in. We therefore expect the code to be useful
for trying out new MKL formulations as well as optimizing
existing ones. Our objective is to provide a flexible and
efficient tool for kernel learning and the SPG-GMKL code
can be downloaded from [17].

2. RELATED WORK
Research in Multiple Kernel Learning has focused on both

developing new MKL formulations as well as their opti-
mization. Different formulations are required to address the
needs of different applications. Early work focused on learn-
ing the kernel as a linear combination of given base kernels
subject to l1 or l2 regularization [12, 19]. This was later
extended to handle any lp>1 regularizer [18], mixed block
regularizers [1] as well as radius-margin based regulariza-
tion [14]. Non-linear kernel combinations [11, 28], such as
products of kernels and mixtures of polynomials, have also
been shown to be appropriate in certain domains. Other
formulations include multi-class MKL [34], learning over ex-
ponentially large kernel combinations [2], learning a different
kernel combination per data point [15,20] and MKL discrim-
inant and subspace analysis [9, 32]. Many of these formula-
tions can be easily cast in the GMKL framework.

As regards optimization, specialized algorithms have been
developed for many of these formulations. For instance, lin-
ear MKL subject to l1 regularization has been optimized
via semi-definite programming [19], M.-Y. regularization [3],
semi-infinite linear programming [26] and mirror descent [1].
Sparse MKL models have also been learnt by direct, greedy
minimization of the l0 norm [25]. Linear MKL with lp regu-
larization has been optimized using the SMO algorithm [31],
stochastic gradient descent [21] and semi-infinite linear pro-
gramming [18]. Stochastic gradient descent has also been
used for optimizing multi-class MKL [21,22] and second or-
der cone programming [27] for learning hyper-kernels.

Unfortunately, most of these specialized optimization tech-
niques are limited to their own formulation and do not gen-
eralize well. Gradient descent, on the other hand, can be
used to optimize many formulations. It has been used to
train linear MKL with l1 regularization [8,23,29], multi-class



MKL with shared parameters [23], for learning local ker-
nel combinations per data point [15], for hierarchical kernel
learning over exponentially large kernel combinations [2] and
for learning non-linear kernel combinations [28]. All of these
formulations, even if they are not covered under GMKL, can
benefit by replacing their gradient descent based optimizer
by our proposed SPG algorithm.

3. GMKL: GENERALIZED MULTIPLE KER-
NEL LEARNING

We review the GMKL formulation in this section and dis-
cuss how it can be optimized via gradient descent. We focus
on the binary classification problem though other convex
loss functions can be substituted as desired.
Our objective is to learn a function of the form f(x) =

wtφd(x)+b with the kernel kd(xi,xj) = φt
d(xi)φd(xj) rep-

resenting the dot product in feature space φ parameterized
by d. The goal in training an SVM is to learn the globally
optimal values of w and b from training data {(xi, yi)}. In
addition, MKL also estimates the kernel parameters d. The
primal formulation of GMKL is

Min
d

T (d) subject to d ≥ 0 (1)

where T (d) = Min
w,b

1

2
w

t
w +

∑

i

l(yi, f(xi)) + r(d)

where both the regularizer r and the kernel can be any
general differentiable functions of d with continuous deriva-
tive and l could be one of various loss functions such as
l = C max(0, 1 − yif(xi)) for classification. The constraint
d ≥ 0 can be strengthened or relaxed depending on the cost
of projecting back into the feasible set so as to ensure that
the parameterized kernel remains positive definite. Allowing
the regularizer, kernel and loss function to have such gen-
eral forms permits GMKL the flexibility to directly model,
or be easily extended to, most of the formulations discussed
in Section 2. For instance, the kernel can be learnt to be a
linear combination of given base kernels, product of kernels
or mixture of polynomials, etc. Similarly, the regularizer can
be set to the 1-norm, any p > 1-norm, a mixed block norm,
the log determinant of the learnt kernel matrix, etc.
The GMKL primal was deliberately formulated as a nested

optimization. The key idea is that once the kernel parame-
ters d are fixed, an efficient, single kernel SVM solver, such
as LibSVM, can be used to solve the inner optimization in
T while T itself can be optimized via gradient descent.
In order to optimize T using gradient descent, we need to

prove that ∇dT exists and calculate it efficiently. This is
best achieved by looking at T ’s dual given by

W (d) = max
α

1
t
α− 1

2
α

t
YKdYα+ r(d) (2)

subject to 1
t
Yα = 0, 0 ≤ α ≤ C (3)

where Kd is the kernel matrix for a given d and Y is a
diagonal matrix with the labels on the diagonal.
Note that we can write T = r + P and W = r + D

with strong duality holding between P and D. Therefore,
T (d) = W (d) for any given value of d, and it is sufficient
for us to show that W is differentiable and calculate ∇dW .
Proof of the differentiability of W comes from Danskin’s
Theorem [13]. Since the feasible set is compact, the gradi-
ent can be shown to exist if k, r, ∇dk and ∇dr are smoothly

varying functions of d and if α∗, the value of α that opti-
mizes W , is unique. Furthermore, a straight forward exten-
sion of Lemma 2 in [8] can be used to show that W have
derivatives given by

∂T

∂dk
=

∂W

∂dk
=

∂r

∂dk
− 1

2
α

∗t ∂H

∂dk
α

∗ (4)

where H = YKY. Thus, in order to take a gradient step, all
we need to do is obtain α∗. Note that since W is equivalent
to the single kernel SVM dual with kernel matrix Kd, α

∗

can be obtained by any SVM optimization package. The
projection operator in our case is P(d) = max(0,d).

To guarantee convergence, the step size sn is chosen ac-
cording to the Armijo rule so as to satisfy

W (d+ sng) ≤W (d) + γsngt
∇W (d) (5)

where g is the chosen direction of descent, the negative gra-
dient −∇W (d) in our case, and γ is a tolerance parameter.

4. SPECTRAL PROJECTED GRADIENT DE-
SCENT OPTIMIZATION FOR GMKL

Spectral gradient descent iteratively approximates the ob-
jective function with a quadratic model and then optimizes
the model at each iteration. It is particularly well suited to
large scale problems since it builds a coarse approximation
very efficiently and without any memory overhead. Early
work by Barzilai and Borwein [4] laid the foundation for
choosing the step size as the spectral step length. Grippo’s
classic non-monotone line search criterion for Newton meth-
ods [16] was incorporated into the algorithm by Raydan
in [24]. The technique was extended to handle constrained
optimization problems in [5] who recommended descending
according to the spectral projected gradient rather than the
regular gradient so as to reduce the number of projection
operations. We refer to this algorithm as Spectral Projected
Gradient (SPG) descent and efficiently adapt it for optimiz-
ing GMKL based on gradient precision tuning. In addition,
we replace the classic non-monotone line search criterion by
the one proposed in [33] based on averaging. Proofs of con-
vergence for each of the methods can be found in their re-
spective publications. A few attempts have been made to use
SPG for optimizing machine learning problems [10]. How-
ever, SPG appears not to be a widely used technique in
machine learning or data mining.

Our SPG-GMKL pseudo code is given in Algorithm 1.
The three main components are the spectral step length
and the spectral projected gradient computation, the non-
monotone line search and the SVM solver precision tuning.

Algorithm 1 SPG-GMKL

n← 0
Initialize d0 randomly
repeat

α∗ ← SolveSVMǫ(K(dn))
λ← SpectralStepLength
pn ← dn −P(dn − λ∇W(dn))
sn ← Non-Monotone
ǫ← TuneSVMPrecision
dn+1 ← dn − snpn

until converged



We discuss these components in detail and also mention our
convergence criterion and kernel caching strategy.

Spectral step length and projected gradient.

We describe how to move from the current iterate dn to
the next iterate dn+1. The step size and the descent direc-
tion are chosen so as to reduce the number of SVM eval-
uations and projection operations as compared to regular
projected gradient descent.
SPG-GMKL chooses it’s step size based on second order

information. At each iteration, it approximates the GMKL
objective function W (d) by a quadratic in d. The step size
is then based on the eigenvalues of the approximated Hes-
sian. A particularly simple choice of the Hessian, λ−1I, is
made so as to be able to efficiently scale to large problems.
Imposing the constraint that the directional derivatives of
the objective and the approximated functions match at the
current point leads to the following choice for λ

λn =

〈

dn − dn−1,dn − dn−1
〉

〈dn − dn−1,∇W (dn)−∇W (dn−1)〉
(6)

If λn is negative then it is set to λMax, else it is clipped

between λMin = 10−30 and λMax = 10 so as to ensure that
the steps are always bounded.
Standard methods would have taken a projected gradi-

ent step of size λn. However, in SPG, we instead step in
the direction of the negative spectral projected gradient. In
particular, the next iterate is obtained as

d
n+1 = d

n − snpn (7)

where p
n = d

n −P(dn − λn
∇W (dn)) (8)

where sn is selected from {1, 1/2, 1/4, . . .} according to the
non-monotone line search criterion, p is the spectral pro-
jected gradient and P is the projection operator in our case
P(d) = max(d,0). This choice of descent direction ensures
that the projection operator needs to be applied only once
per iteration. While the cost of projection is negligible in
our case it might become significant if the constraints d ≥ 0
are replaced by more complicated ones.

Non-monotone line search criterion.

We employ a non-monotone line search criterion so as to
reduce the number of SVM evaluations and be robust to
the objective function and gradient noise inherent in GMKL
optimization. The classical SPG non-monotone line search
criterion selects step sizes sn that satisfy

W (dn − snpn) ≤ max
0≤j≤M

W (dn−j)− γsn∇tW (dn)pn (9)

So as to allow the objective function to increase once in a
while. However, [33] observed that, for unconstrained quasi-
Newton methods, maximizing over the previous function val-
ues could be unstable in some cases and that averaging could
be a much better alternative. We therefore incorporate their
criterion into SPG-GMKL by choosing sn satisfying

W (dn − snpn) ≤ Cn − γsn∇tW (dn)pn (10)

Qn+1 = ηnQn + 1 (11)

Cn+1 = (ηnQnCn +W(dn+1))/Qn+1 (12)

where we set C0 = W (d0), Q0 = 1 and γ = 10−4. The
parameter η influences the number of iterations over which

W is averaged. Setting η = 0 reduces the criterion to the
Armijo rule while setting η = 1 implies averaging W over all
previous iterations. We follow the heuristic of [33] and vary
η dynamically depending on the behavior of the objective
function and the approximated quadratic. If the approxi-
mation is good (bad) then we increase (decrease) η by 0.025
making sure to clip it between [0.1, 1] else leave it unchanged.

Tuning the tolerance of the SVM solver.

The SPG-GMKL optimizer is robust to imprecisions in
calculating the objective function and the gradient. We ex-
ploit this by solving SVMs with a tolerance of only 10−1 in
the initial iterations. This is automatically decreased as we
move closer to the optimum or the step size becomes too
small. The SVM solver’s tolerance is set as

ǫ =



















min(ǫ, 10−1) if (1 ≤ u) or (5 ≤ v)

min(ǫ, 10−2) if (0.1 ≤ u < 1) or (1 ≤ v < 5)

min(ǫ, 10−3) if (u < 0.1) or (v < 1)

max(ǫ/10, 10−5) if sn < 10−8

(13)

where u is the duality gap (whenever available) and v is the
projected gradient norm.

Convergence Criterion and Kernel Caching.

We declare the SPG-GMKL algorithm to have converged
whenever the duality gap reduces below 10−3 or, if the du-
ality gap is unavailable, whenever the l2 or l∞ norm of the
projected gradient reduces below 0.04. The reason the stop-
ping criterion is so loose in terms of the projected gradient
norm is because we do not assume that our inner SVM solver
produces high quality solutions, and hence there is signifi-
cant noise in the gradient estimates. In fact, the condition
on the projected gradient seems stricter since, in many of
the small data sets, the duality gap fell below 10−3 before
the projected gradient norm reduced below 0.04. However,
on some of the larger data sets, the projected gradient norm
was found to become small even when the duality gap was
large. We therefore use the duality gap as a stable stopping
criterion whenever it is available (for sum of kernels in our
experiments).

Kernel caching strategies can have a big impact on perfor-
mance since kernel computations can dominate everything
else in some cases. While a few different kernel caching tech-
niques have been explored for SVMs, we stick to the stan-
dard one used in LibSVM [6]. A Least Recently Used (LRU)
cache is implemented as a circular queue. Each element in
the queue is a pointer to a recently accessed (common) row
of each of the individual kernel matrices.

Advantages over projected gradient descent.

Our SPG-GMKL implementation has a number of advan-
tages over regular projected gradient descent. First, we are
able to efficiently bring second order information into play by
choosing our step size according to the spectral step length.
This was found to be very beneficial for many data sets.
Second, we can significantly reduce the number of SVM
evaluations by combining the spectral step length compu-
tation with a non-monotone line search criterion. While
gradient descent might take ten or more SVM evaluations
to find a step size satisfying the Armijo rule, SPG-GMKL
will frequently take only a single SVM evaluation as the
first step size proposal is accepted. The non-monotone line



search might also have beneficial side effects. Non-convex
kernel parameterizations might benefit as such criteria have
been shown to sometimes help escape poor local optima.
Furthermore, non-monotonicity can also be helpful in cases
when the objective function starts resembling a long, nar-
row valley where standard gradient descent techniques can
get stuck. Third, our SPG-GMKL implementation is robust
to noise in the calculation of the gradient and the objective
function. Gradient descent can require hundreds of SVM
evaluations in a line search when the gradient is not point-
ing in the right direction. SPG-GMKL is typically more
robust and can recover much faster. Fourth, by starting
with a low SVM precision and then dynamically increasing
it as required, we can make the cost of evaluating each SVM
much lower. This was found to give an order of magnitude
improvement over gradient descent on some large data sets
where the cost of evaluating an SVM is very high.

5. EXPERIMENTS
We carry out extensive experiments to test the perfor-

mance of SPG-GMKL along various dimensions. We bench-
mark its performance on small, medium and large scale data
sets. We show that SPG-GMKL consistently outperforms
projected gradient descent by a wide margin and that SPG-
GMKL can often be more than ten times faster. We also
demonstrate that SPG-GMKL can scale well to large prob-
lems involving a million kernels on Sonar or over half a mil-
lion data points on Covertype. This is particularly signifi-
cant as Covertype is one of the largest data sets on which
an RBF SVM can be trained without parallelization.
We also optimize four different MKL formulations to demon-

strate the flexibility of SPG-GMKL. We learn two different
types of kernel combinations – sum of kernels with K =
∑

k
dkKk and product of kernels with K =

∏

k
Kk(dk) =

∏

k
e−dkDk corresponding to tuning the RBF bandwidth

while combining distance functions Dk. We regularize these
with the l1 and lp>1 norms. We focus on the linear MKL
formulations in Subsections 5.1 and 5.2. Specialized optimiz-

Table 1: Data set statistics

Data sets # Train # Dim
# Kernels

Sum Product
Leukemia 38 7129 7129
Wpbc 194 34 455 34
Sonar 208 60 793 60
Liver 345 6 91 6
Ionosphere 351 34 455 34
Breast-Cancer 683 10 143 10
Australian 690 14 195 14
Diabetes 768 8 117 8
Letter 20000 16 16
RCV1 20242 47236 50
Adult-8 22696 123 50 42
Web-7 24692 300 50 43
Poker 25010 10 10
Adult-9 32561 123 50 42
Web-8 49749 300 50 43
KDDCup04-Physics 50000 71 50
Cod-RNA 59535 8 50 8
Real-Sim 72309 20958 25
Covertype 581012 54 5

ers have been developed for learning a sum of base kernels
subject to l1 regularization as it is one of the most popular
formulations. We show that the performance of general pur-
pose SPG-GMKL can be much better than state-of-the-art
implementations of some of these specialized optimizers. We
then use SPG-GMKL to learn products of kernels in Subsec-
tions 5.3 and 5.4 which cannot be optimized using any other
solver (apart from projected gradient descent, of course).
We show that SPG-GMKL scales well to many problems
where projected gradient descent fails to converge.

Finally, in Subsection 5.5, we study the scaling properties
of SPG-GMKL and the contribution of each of the individual
components. On the data sets that we tried, SPG-GMKL
exhibited a linear dependence on the number of kernels and a
sub-quadratic dependence on the number of training points.
We also show that each of the three major components
of SPG-GMKL, namely the spectral step length, the non-
monotone line search and the SVM solver precision tuning,
are necessary and that removing any of them can lead to
substantial degradations in performance.

We briefly describe the various implementations that we
tested. We refer to our algorithm as SPG-GMKL and the
projected gradient descent algorithm as PGD. The SPG-
GMKL implementation is obtained by starting from the
PGD codebase and adding spectral step length computation,
the non-monotone line search criterion and SVM solver tol-
erance tuning. This ensures an absolutely fair comparison
between the two implementations. Another projected gradi-
ent descent implementation is available in the form of Sim-
pleMKL [23]. The code was downloaded from the authors’
website. However, this implementation is meant only for lin-
ear MKL subject to l1 regularization and hence we compare
to it only in Subsection 5.2. For this formulation, a very
efficient implementation of the SILP-MKL [26] optimizer is
available in the Shogun toolbox. We downloaded the latest
version of Shogun (v 0.9.3) and used the highly optimized
CPLEX solver to solve their outer loop LP. Note that the
linear MKL formulations can be made convex with a simple
change of variables. As such, SPG-GMKL and PGD con-
verge to the same solution. SimpleMKL and SILP-MKL can
also be made to converge to the same solution with an ap-
propriate choice of parameters. We therefore report only the
training time in our experiments as the objective function
value, number of kernels selected and prediction accuracy
on the test set are similar for all the methods. SPG-GMKL
and PGD might potentially converge to different solutions
for the non-convex formulations involving products of ker-
nels. We did not observe this behavior though, and both
implementations returned very similar solutions. Table 1
summarizes the statistics of the data sets that were tried.
For linear MKL, kernels were generated as recommended
in [23] for the small data sets. We generated RBF kernels
with ten bandwidths for each individual dimension of the
feature vector as well as the full feature vector itself. Sim-
ilarly, we also generated polynomial kernels of degrees 1, 2
and 3. Kernel matrices were pre-computed and normalized
to have unit trace. A fixed number of kernels were computed
on the fly for the medium and large data sets. All kernels
were computed on the fly for products of kernels where we
defined one RBF kernel per feature for the small data sets
and a fixed number for the large data sets. We perform 5
fold cross validation on the small data sets. This gives both
the mean training time and its variance so as to better judge



Table 2: lp>1-SumMKL results on small data sets.
p = 1.1 p = 1.33 p = 2.0

Data sets PGD (s) SPG-GMKL (s) PGD (s) SPG-GMKL (s) PGD (s) SPG-GMKL (s)
Australian 39.4± 6.0 7.0± 1.6 248.3± 329.7 6.9± 1.2 23.5± 2.3 6.0± 0.2
Liver 282.2± 226.0 0.8± 0.1 3.3± 2.5 0.7± 0.1 0.7± 0.1 0.6± 0.1
Sonar 785.5± 471.1 9.0± 1.8 57.8± 39.8 4.2± 0.4 7.7± 1.1 3.1± 0.3
Breast-Cancer 237.2± 97.8 8.6± 2.2 11.2± 2.4 3.3± 0.1 6.6± 0.6 2.7± 0.1
Diabetes 73.6± 38.8 4.1± 0.5 11.5± 2.4 3.0± 0.1 3.6± 0.1 2.5± 0.1
Wpbc 44.4± 11.6 1.2± 0.4 5.3± 1.8 1.3± 0.5 1.7± 0.2 1.2± 0.1

Table 3: lp=1.33-SumMKL results on large data sets
Data sets PGD (hrs) SPG-GMKL (hrs)
Adult-9 31.77 4.42
Cod-RNA 66.48 19.10
KDDCup04 - 42.20
Covertype - 64.46
Sonar1M - 105.62

the significance of our results. The SVM parameter C was
chosen by validation so as to maximize the prediction accu-
racy. All experiments were carried out on a single core of a
2.1 Ghz AMD 6172 processor with 48 Gb RAM. The results
on Covertype were obtained on a similar machine with only
14 Gb RAM.

5.1 Sum of kernels with lp>1 regularization
We learn a linear combination of base kernels subject to

lp>1 regularization. This formulation has yielded state-of-
the-art results [22] for combining multiple, heterogeneous
features for recognizing objects on the challenging Caltech
image data sets. We focus on comparing SPG-GMKL to
PGD in this Subsection. Table 2 summarizes the results on
the small data sets. For small values of p, the optimiza-
tion problem is hard, and SPG-GMKL can be two orders of
magnitude faster than PGD. As the value of p increases, the
optimization problem becomes much simpler, and the two
techniques become more comparable though SPG-GMKL
can still be twice as fast as PGD.
Results on the larger data sets are given in Table 3. PGD

is again much slower and fails to converge on KDDCup04-
Physics with fifty thousand points, Covertype with nearly
six hundred thousand points and Sonar with a million ker-
nels. SPG-GMKL, without any parallelization, converged
on Covertype with 26 SVM evaluations in 64 hours which is
reasonable given that solving just the first SVM, equivalent
to solving a single kernel SVM obtained by linearly summing
the five base kernels with uniform weights, took 44 hours.
Note that we were caching only 0.19% of the support vec-
tors and thus the training time can be considerably speeded
up by utilizing a larger kernel cache. Similar trends were
observed for Sonar with a million kernels.
Figure 1 plots the decrease in objective value versus time

on a log-log scale. SPG-GMKL’s initial steps are much
quicker than PGD’s due to the combination of the spectral
step length, the non-monotone line search and the coarse
SVM precision. SPG-GMKL therefore gets close, and con-
verges, to the optimum much faster than PGD. The non-
monotone behavior of SPG-GMKL is prominent on both
the Web and Sonar20K datasets. Note that, on Web, the
objective function seems to dip below the global minimum.
This is due to noise in the objective function because of the

Table 6: l1-SumMKL results on large data sets
Data sets PGD (hrs) SPG-GMKL (hrs)
Adult-9 35.84 4.55
Cod-RNA - 25.17
KDDCup04 - 40.10
Real-Sim - 45.94

coarse SVM precision. PGD would have gotten stuck here as
it insists on a strict decrease in the objective function at each
iteration. SPG-GMKL can recover due to its non-monotone
criterion and SVM precision tuning. This demonstrates that
SPG-GMKL is more robust to noise than PGD.

5.2 Sum of kernels with l1 regularization
One of the most popular MKL formulations is to learn

a sum of given base kernels subject to l1 regularization on
the combination coefficients. The joint winner of the highly
competitive PASCAL VOC object detection challenge [30]
employed such a formulation to learn a sparse combina-
tion of features for efficient object detection in images. A
number of optimizers have been developed for this formu-
lation. The state-of-the-art is defined by SILP-MKL and
SimpleMKL. Table 4 shows that SPG-MKL can not only
outperform PGD on this formulation, it is also much bet-
ter than SILP-MKL and SimpleMKL. For instance, SPG-
GMKL is always more than twice as fast as SILP-MKL and
can sometimes be orders of magnitude faster as the number
of kernels is increased. This demonstrates that our gen-
eral purpose SPG-GMKL solver can be more efficient than
state-of-the-art optimizers designed for a specific formula-
tion. SPG-GMKL is also an order of magnitude faster than
SimpleMKL and PGD which are two different implementa-
tions of the projected gradient descent algorithm. Hessian-
MKL [7] provides a second order method for optimizing this
formulation. While we found HessianMKL to be an improve-
ment over SimpleMKL on small data sets, it’s performance
was still much worse than that of SPG-GMKL.

5.3 Product of kernels with lp>1 regularization
We demonstrate the flexibility of SPG-GMKL by using it

to learn products of kernels subject to lp>1 regularization.
Note that this formulation presents a challenging non-convex
optimization problem. Tables 5 and 8 detail performance on
small and large data sets respectively. PGD failed to con-
verge in many cases and, when it did, it was often ten to
a hundred times slower than SPG-GMKL. We found that
the main reason for PGD not converging was that its step
size was approaching zero due to inaccurate gradient com-
putation coupled with the Armijo rule. As a result, PGD
required many SVM evaluations to take a miniscule step and
timed out after a considerable period. On the other hand,
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Figure 1: Decrease in objective value with time on a log-log scale for SPG-GMKL and PGD.

Table 4: l1-SumMKL results on small data sets.
Data sets SimpleMKL (s) SILP-MKL (s) PGD (s) SPG-GMKL (s)
Wpbc 400.2± 128.4 15.5± 7.7 38.2± 17.6 6.2± 4.2
Breast-Cancer 676.1± 356.4 12.3± 1.2 57.9± 85.1 5.1± 0.6
Australian 383.2± 33.5 1094.9± 621.6 29.5± 7.1 10.1± 0.8
Ionosphere 1247.6± 680.0 107.8± 18.8 1392.4± 824.2 39.2± 6.8
Sonar 1468.2± 1252.7 935.1± 65.0 − 273.4± 64.0

Table 5: lp>1-ProdMKL results on small data sets.
p = 1.1 p = 1.33 p = 2.0

Data sets PGD (s) SPG-GMKL (s) PGD (s) SPG-GMKL (s) PGD (s) SPG-GMKL (s)
Australian − 22.0 ± 8.4 − 22.1 ± 6.7 − 21.6 ± 6.4
Liver 722.4 ± 880.0 1.0 ± 0.3 136.1 ± 167.9 0.6 ± 0.2 0.3 ± 0.1 0.4 ± 0.1
Sonar − 7.4 ± 2.9 − 3.2 ± 0.5 293.8 ± 574.7 3.1 ± 0.5
Breast-Cancer 28.4 ± 42.5 4.0 ± 1.0 448.6 ± 691.5 3.3 ± 0.8 377.8 ± 712.0 3.2 ± 0.5
Diabetes 1232.5 ± 716.2 4.8 ± 2.4 364.4 ± 718.3 2.5 ± 0.5 2.1 ± 0.4 2.1 ± 0.1
Wpbc 1080.3 ± 90.9 4.4 ± 1.8 1064.7 ± 41.2 3.7 ± 1.4 209.3 ± 390.8 2.1 ± 0.4
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Figure 2: Variation in training time with the number of kernels and data points for SPG-GMKL and PGD.

Table 7: Effects of individual components on small data sets.

Data sets
PGD PGD+N PGD+S PGD+N+S

Time (s) # SVMs Time (s) # SVMs Time (s) # SVMs Time (s) # SVMs
Australian 39.4± 6.0 3230 32.7± 3.6 116 317.0± 49.1 5980 7.0± 1.6 621
Sonar 785.5± 471.1 209461 41.6± 17.1 3236 40.2± 24.6 3806 9.0± 1.8 2457
Breast-Cancer 237.2± 97.8 109599 42.2± 4.1 1187 14.9± 2.2 3537 8.6± 2.2 3006
Diabetes 73.6± 38.8 29347 26.3± 9.5 2966 10.5± 2.6 1239 4.1± 0.5 695
Wpbc 44.4± 11.6 14376 27.9± 13.6 9388 2.9± 0.8 340 1.2± 0.4 79
Adult-1 376 196 356 196 104 118 71 50
Adult-2 547 238 549 238 207 115 143 70



Table 8: lp=1.33-ProdMKL results on large data sets.
Data sets PGD (hrs) SPG-GMKL (hrs)
Letter 18.89 0.66
Poker 2.29 0.96
Adult-8 - 3.42
Web-7 - 1.33
RCV1 - 15.93
Cod-RNA - 8.99

SPG-GMKL generally required only a single SVM evalua-
tion per iteration and converged quickly to the optimum.

5.4 Product of kernels with l1 regularization
We finally use SPG-GMKL to learn products of kernels

subject to l1 regularization. This formulation was observed
to be very good for feature selection [28] as it was signifi-
cantly better than leading filter and wrapper methods. Ta-
bles 9 and 10 compare the performance of SPG-GMKL and
PGD on small and large data sets respectively. The trends,
and explanations, are much the same as for lp regularized
product of kernels but SPG-GMKL’s gains over PGD are
even bigger. For instance. On many of the small data sets,
SPG-GMKL was a thousand times faster than PGD.

5.5 Scaling Properties and component contri-
butions

We now investigate how SPG-GMKL scales with the num-
ber of kernels and data points. Figure 2 plots the results for
linear MKL with various values of p on a log-log scale. The
number of training points is varied on the Adult and Web
data sets while the number of kernels is varied on Sonar.
We estimate, from the plots, that SPG-GMKL, on aver-
age, scales linearly with the number of kernels on Sonar and
as n1.98 and n1.52 with the number of training points on
Adult and Web. The scaling factors are very similar for
PGD though the constants involved are much bigger.
We also determine the contribution of each of the three

major components of SPG-GMKL, namely the spectral step
length, the non-monotone line search and the SVM precision
tuning. In Table 7, we start with the PGD implementa-
tion as the baseline. We then turn on either the spectral
step length computation (PGD+S), or the non-monotone
line search (PGD+N), or both (PGD+N+S) and assess the
impact on both training time and the number of SVM evalu-
ations. As can be seen, adding either component in isolation
does not lead to the best gains and, in fact, can sometimes
degrade performance below the PGD baseline. It is only
when both the components are combined that one consis-
tently gets improvements in performance.
The full impact of tuning the SVM precision is best seen

on larger data sets where the cost of evaluating an SVM is

Table 9: l1-ProdMKL results on small data sets.
Data sets PGD (s) SPG-GMKL (s)
Australian − 16.6 ± 7.2
Sonar − 4.8 ± 1.7
Liver 1482.6 ± 635.7 2.6 ± 2.0
Breast-Cancer 1182.6 ± 662.4 4.4 ± 1.5
Diabetes 1525.7 ± 552.6 7.6 ± 6.6
Wpbc 1093.9 ± 187.5 2.7 ± 1.0
Leukemia 2961.5 ± 0.0 850.0 ± 0.0

Table 10: l1-ProdMKL results on large data sets.
Data sets PGD (hrs) SPG-GMKL (hrs)
Letter 18.66 0.67
Poker 5.57 0.49
Adult-8 - 1.73
Web-7 - 0.88
RCV1 - 18.17
Cod-RNA - 3.45

Table 11: Effects of individual components on large data
sets

Data sets
PGD PGD+N+S SPG-GMKL
(hrs) (hrs) (hrs)

Adult-9 31.77 8.33 4.43
Web-8 4.27 1.73 0.87
Sonar100K 53.91 3.35 2.19

significant. Table 11 shows that adding spectral step length
computation and the non-monotone line search criterion to
the PGD baseline cuts down its training time to at least
half on Web and by more than fifteen times on Sonar. SPG-
GMKL adds SVM precision tuning to the combination to
further reduce the training time by a factor of two. Thus,
each of the three major components that we proposed must
be present in order for SPG-GMKL to be an efficient solver
that scales well to large problems.

6. CONCLUSIONS
In this paper, we developed an efficient, spectral projected

gradient descent based optimizer for the Generalized Mul-
tiple Kernel Learning framework. Starting from the pro-
jected gradient descent algorithm, we added three compo-
nents based on the spectral step length, the non-monotone
line search criterion and SVM precision tuning. We demon-
strated that each of the components is necessary to the suc-
cess of the SPG-GMKL optimizer.

We carried out extensive experiments benchmarking the
performance of SPG-GMKL. We showed that SPG-GMKL
routinely gives order of magnitude improvements over PGD
and scales well to problems where PGD does not converge.
For instance, SPG-GMKL was able to train on problems
with a million kernels or half a million data points. This
redefines the state-of-the-art in kernel learning optimiza-
tion. Furthermore, SPG-GMKL, even though it is a gen-
eral purpose solver, was able to outperform leading special-
ized solvers developed for a specific formulation. As such,
SPG-GMKL is one of the most efficient techniques for kernel
learning.

We tested the flexibility of SPG-GMKL by having it op-
timize four different MKL formulations. Our code is easy to
modify and new formulations can readily be plugged in. Our
objective is to provide an efficient tool for rapidly prototyp-
ing new MKL formulations and trying out existing ones on
real world applications.
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