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Abstract— Anticipating the future actions of a human is
a widely studied problem in robotics that requires spatio-
temporal reasoning. In this work we propose a deep learning
approach for anticipation in sensory-rich robotics applications.
We introduce a sensory-fusion architecture which jointly learns
to anticipate and fuse information from multiple sensory
streams. Our architecture consists of Recurrent Neural Net-
works (RNNs) that use Long Short-Term Memory (LSTM)
units to capture long temporal dependencies. We train our
architecture in a sequence-to-sequence prediction manner, and
it explicitly learns to predict the future given only a partial
temporal context. We further introduce a novel loss layer for
anticipation which prevents over-fitting and encourages early
anticipation. We use our architecture to anticipate driving
maneuvers several seconds before they happen on a natural
driving data set of 1180 miles. The context for maneuver
anticipation comes from multiple sensors installed on the
vehicle. Our approach shows significant improvement over
the state-of-the-art in maneuver anticipation by increasing the
precision from 77.4% to 90.5% and recall from 71.2% to 87.4%.

I. INTRODUCTION

Anticipating the future actions of a human is an important
perception task and has many applications in robotics. It
has enabled robots to navigate in a social manner and
perform collaborative tasks with humans while avoiding
conflicts [24} 41, 21} 40]). In another application, anticipating
driving maneuvers several seconds in advance [19} 27, 38|
36] enables assistive cars to alert drivers before they make
a dangerous maneuver. Maneuver anticipation complements
existing Advance Driver Assistance Systems (ADAS) by
giving drivers more time to react to road situations and
thereby can prevent many accidents [30].

Activity anticipation is a challenging problem because it
requires the prediction of future events from a limited tem-
poral context. It is different from activity recognition [40],
where the complete temporal context is available for pre-
diction. Furthermore, in sensory-rich robotics settings, the
context for anticipation comes from multiple sensors. In
such scenarios the end performance of the application largely
depends on how the information from different sensors are
fused. Previous works on anticipation [20, 21} 24] usually
deal with single-data modality and do not address anticipa-
tion for sensory-rich robotics applications. Additionally, they
learn representations using shallow architectures [19, 20, 21}
24| that cannot handle long temporal dependencies [4].

In order to address the anticipation problem more gener-
ally, we propose a Recurrent Neural Network (RNN) based
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Fig. 1: (Left) Shows training RNN for anticipation in a sequence-to-
sequence prediction manner. The network explicitly learns to map
the partial context (x1,..,x:) V¢ to the future event y. (Right) At
test time the network’s goal is to anticipate the future event as soon
as possible, i.e. by observing only a partial temporal context.

architecture which learns rich representations for anticipa-
tion. We focus on sensory-rich robotics applications, and our
architecture learns how to optimally fuse information from
different sensors. Our approach captures temporal dependen-
cies by using Long Short-Term Memory (LSTM) units. We
train our architecture in a sequence-to-sequence prediction
manner (Figure [I) such that it explicitly learns to anticipate
given a partial context, and we introduce a novel loss layer
which helps anticipation by preventing over-fitting.

We evaluate our approach on the task of anticipating driv-
ing maneuvers several seconds before they happen [19} 27].
The context (contextual information) for maneuver anticipa-
tion comes from multiple sensors installed on the vehicle
such as cameras, GPS, vehicle dynamics, etc. Information
from each of these sensory streams provides necessary cues
for predicting future maneuvers. Our overall architecture
models each sensory stream with an RNN and then non-
linearly combines the high-level representations from multi-
ple RNNs to make a final prediction.

We report results on 1180 miles of natural driving data
collected from 10 drivers [19]. The data set is challenging
because of the variations in routes and traffic conditions,
and the driving styles of the drivers (Figure 2). On this
data set, our deep learning approach improves the state-of-
the-art in maneuver anticipation by increasing the precision
from 77.4% to 84.5% and recall from 71.2% to 77.1%. We



further improved these results by extracting richer features
from cameras such as the 3D head pose of the driver’s face.
Including these features into our architecture increases the
precision and recall to 90.5% and 87.4% respectively. Key
contributions of this paper are:

o A sensory-fusion RNN-LSTM architecture for anticipa-
tion in sensory-rich robotics applications.

e A new vision pipeline with rich features (such as 3D
head pose) for maneuver anticipation.

« State-of-the-art performance on maneuver anticipation
on 1180 miles of driving data [19].

II. RELATED WORK
Our work is related to previous works on anticipating hu-
man activities, driver behavior understanding, and Recurrent
Neural Networks (RNNs) for sequence prediction.

Several works have studied human activity anticipation
for human-robot collaboration and forecasting. Anticipating
human activities has been shown to improve human-robot
collaboration [40, 21} 25| [10]. Similarly, forecasting human
navigation trajectories has enabled robots to plan sociable
trajectories around humans [20} 16} 24]. Feature matching
techniques have been proposed for anticipating human ac-
tivities from videos [31l]. Approaches used in these works
learn shallow architectures [4] that do not properly model
temporal aspects of human activities. Furthermore, they deal
with a single data modality and do not tackle the challenges
of sensory-fusion. We propose a deep learning approach for
anticipation which efficiently handles temporal dependencies
and learns to fuse multiple sensory streams.

We demonstrate our approach on anticipating driving
maneuvers several seconds before they happen. This is a
sensor-rich application for alerting drivers several seconds
before they make a dangerous maneuvering decision. Pre-
vious works have addressed maneuver anticipation [1, [19}
27, 9, 137] through sensory-fusion from multiple cameras,
GPS, and vehicle dynamics. In particular, Morris et al. [27]
and Trivedi et al. [37] used a Relevance Vector Machine
(RVM) for intent prediction and performed sensory fusion
by concatenating feature vectors.

More recently, Jain et al. [[19]] showed that concatenation of
sensory streams does not capture the rich context for mod-
eling maneuvers. They proposed an Autoregressive Input-
Output Hidden Markov Model (AIO-HMM) which fuses
sensory streams through a linear transformation of features
and it performs better than feature concatenation [27]. In
contrast, we learn an expressive architecture to combine
information from multiple sensors. Our RNN-LSTM based
sensory-fusion architecture captures long temporal depen-
dencies through its memory cell and learns rich represen-
tations for anticipation through a hierarchy of non-linear
transformations of input data. Our work is also related
to works on driver behavior prediction with different sen-
sors [17, 114} {13, 9], and vehicular controllers which act on
these predictions [33} 138, [11].

Two building blocks of our architecture are Recurrent
Neural Networks (RNNs) [29] and Long Short-Term Mem-
ory (LSTM) units [16]. Our work draws upon ideas from

Fig. 2: Variations in the data set. Images from the data set [[19]
for a left lane change. (Left) Views from the road facing camera.
(Right) Driving style of the drivers vary for the same maneuver.

previous works on RNNs and LSTM from the language [35],
speech [15]], and vision [8] communities. Our approach to the
joint training of multiple RNNSs is related to the recent work
on hierarchical RNNs [12]]. We consider RNNs in multi-
modal setting, which is related to the recent use of RNNs in
image-captioning [8]. Our contribution lies in formulating
activity anticipation in a deep learning framework using
RNNs with LSTM units. We focus on sensory-rich robotics
applications, and our architecture extends previous works
on sensory-fusion from feed-forward networks [28, 34] to
the fusion of temporal streams. Using our architecture we
demonstrate state-of-the-art results on maneuver anticipa-
tion.

III. PRELIMINARIES

We now formally define anticipation and then present
our Recurrent Neural Network architecture. The goal of
anticipation is to predict an event several seconds before it
happens given the contextual information up to the present
time. The future event can be one of multiple possibilities.
At training time a set of temporal sequences of observations
and events {(x1,X2, ..., X7);,¥; }jvzl is provided where x; is
the observation at time ¢, y is the representation of the event
(described below) that happens at the end of the sequence at
t =T, and j is the sequence index. At test time, however, the
algorithm receives an observation x; at each time step, and
its goal is to predict the future event as early as possible,
i.e. by observing only a partial sequence of observations
{(x1,...,x¢)|t < T}. This differentiates anticipation from
activity recognition [39} 22]] where in the latter the complete
observation sequence is available at test time. In this paper,
x; is a real-valued feature vector and y = [y}, ...,y%] is a
vector of size K (the number of events), where y* denotes
the probability of the temporal sequence belonging to event
the k£ such that Zszl y® = 1. At the time of training,
y takes the form of a one-hot vector with the entry in y
corresponding to the ground truth event as 1 and the rest 0.

In this work we propose a deep RNN architecture with
Long Short-Term Memory (LSTM) units [16] for anticipa-
tion. Below we give an overview of the standard RNN and
LSTM which form the building blocks of our architecture
described in Section [Vl



A. Recurrent Neural Networks

A standard RNN [29] takes in a temporal sequence of
vectors (Xi,Xaz,...,X7) as input, and outputs a sequence
of vectors (hi, hs,...,hr) also known as high-level repre-
sentations. The representations are generated by non-linear
transformation of the input sequence from ¢ = 1 to 7T, as
described in the equations below.

ht = f(WXt + Hht—l + b) (1)
y: = softmax(Wyh, + b,) (2)

where f is a non-linear function applied element-wise, and
y: is the softmax probabilities of the events having seen
the observations up to x;. W, H, b, W,, b, are the
parameters that are learned. Matrices are denoted with bold,
capital letters, and vectors are denoted with bold, lower-case
letters. In a standard RNN a common choice for f is tanh
or sigmoid. RNNs with this choice of f suffer from a
well-studied problem of vanishing gradients [29]], and hence
are poor at capturing long temporal dependencies which are
essential for anticipation. A common remedy to vanishing
gradients is to replace tanh non-linearities by Long Short-
Term Memory cells [16]. We now give an overview of LSTM
and then describe our model for anticipation.

B. Long-Short Term Memory Cells

LSTM is a network of neurons that implements a memory
cell [16]. The central idea behind LSTM is that the memory
cell can maintain its state over time. When combined with
RNN, LSTM units allow the recurrent network to remember
long term context dependencies.

LSTM consists of three gates — input gate i, output gate
o, and forget gate f — and a memory cell c. See Figure
for an illustration. At each time step ¢, LSTM first computes
its gates’ activations {i;,f;} ()@ and updates its memory
cell from c;_; to c; (@), it then computes the output gate
activation o; (6), and finally outputs a hidden representation
h; (7). The inputs into LSTM are the observations x; and
the hidden representation from the previous time step h;_;.
LSTM applies the following set of update operations:

it = o(Wix; + Ushy 1 4+ Vici 1 + by) (3)
f, = o(Wx, + Ushy_y + Vye,_1 + by) )
c:=f®ci—1+i ©®tanh(Wex, + Uchs_1 +b.) (5)
o; = 0(Wox; + Ush,_1 + Ve +by) (6)
h; = 0o; ® tanh(cy) @)

where ® is an element-wise product and ¢ is the logistic
function. ¢ and tanh are applied element-wise. W, V,
U,, and b, are the parameters, further the matrices V, are
daigonal. The input and forget gates of LSTM participate
in updating the memory cell (3). More specifically, forget
gate controls the part of memory to forget, and the input
gate computes new values based on the current observation
that are written to the memory cell. The output gate together
with the memory cell computes the hidden representation (7).
Since LSTM cell activation involves summation over time (3))
and derivatives distribute over sums, the gradient in LSTM
gets propagated over a longer time before vanishing. In the
standard RNN, we replace the non-linear f in equation (IJ)
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Fig. 3: Internal working of an LSTM unit.
by the LSTM equations given above in order to capture
long temporal dependencies. We use the following shorthand
notation to denote the recurrent LSTM operation.

(ht,Ct) = LSTM(Xhhtthtfl) ¥

We now describe our RNN architecture with LSTM units
for anticipation. Following which we will describe a particu-
lar instantiation of our architecture for maneuver anticipation
where the observations x come from multiple sources.

IV. NETWORK ARCHITECTURE FOR ANTICIPATION

In order to anticipate, an algorithm must learn to pre-
dict the future given only a partial temporal context. This
makes anticipation challenging and also differentiates it from
activity recognition. Previous works treat anticipation as a
recognition problem [21, |27, 31] and train discriminative
classifiers (such as SVM or CRF) on the complete temporal
context. However, at test time these classifiers only observe
a partial temporal context and make predictions within a
filtering framework. We model anticipation with a recurrent
architecture which unfolds through time. This lets us train
a single classifier that learns how to handle partial temporal
context of varying lengths.

Furthermore, anticipation in robotics applications is chal-
lenging because the contextual information can come from
multiple sensors with different data modalities. Examples
include autonomous vehicles that reason from multiple sen-
sors [2] or robots that jointly reason over perception and
language instructions [26]]. In such applications the way
information from different sensors is fused is critical to the
application’s final performance. For example Jain et al. [19]]
showed that for maneuver anticipation, learning a simple
transformation of the sensory streams works better than
direct concatenation of those streams. We therefore build an
end-to-end deep learning architecture which jointly learns to
anticipate and fuse information from different sensors.

A. RNN with LSTM units for anticipation

At the time of training, we observe the complete temporal
observation sequence and the event {(xi,Xa,...,X7),¥}.
Our goal is to train a network which predicts the fu-
ture event given a partial temporal observation sequence
{(x1,%2,...,x¢)[t < T}. We do so by training an RNN
in a sequence-to-sequence prediction manner. Given train-
ing examples {(x1,Xa,...,X7);,y;}}; We train an RNN
with LSTM units to map the sequence of observations
(x1,Xa,...,x7) to the sequence of events (yi,...,yr) such
that y; =y, V¢, as shown in Fig. [T} Trained in this manner,
our RNN will attempt to map all sequences of partial obser-
vations (x1,Xg,...,X¢) Vt < T to the future event y. This
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Fig. 4: Sensory fus10n RNN for anticipation. (Bottom) In the
Fusion-RNN each sensory stream is passed through their indepen-
dent RNN. (Middle) High-level representations from RNNs are
then combined through a fusion layer. (Top) In order to prevent
over-fitting early in time the loss exponentially increases with time.

way our model explicitly learns to anticipate. We additionally
use LSTM units which prevents the gradients from vanishing
and allows our model to capture long temporal dependencies
in human activities[]

B. Fusion-RNN: Sensory fusion RNN for anticipation

We now present an instantiation of our RNN architecture
for fusing two sensory streams: { (X1, ..., xr), (21, ..., Z7)}.
In Sections [V] and we use the fusion architecture for
maneuver anticipation.

An obvious way to allow sensory fusion in the RNN is by
concatenating the streams, i.e. using ([x1;21], ..., [X7;Z7])
as input to the RNN. However, we found that this
sort of simple concatenation performs poorly. We in-
stead learn a sensory fusion layer which combines
the high-level representations of sensor data. Our pro-
posed architecture first passes the two sensory streams
{(x1,..,x7), (21,...,27)} independently through separate
RNNs (@) and (T0). The high level representations from both
RNNs {(h7,....,h%), (hj,...,h%) are then concatenated at
each time step ¢t and passed through a fully connected
(fusion) layer which fuses the two representations (ITI), as
shown in Figure [d] The output representation from the fusion
layer is then passed to the softmax layer for anticipation (12)).
The following operations are performed from ¢ =1 to 7.

(htzv Cf) = LSTMH?(Xtv f—la c:tv—l) 9)

(hi,cf) = LSTM,(z,hi_;,ci_) (10)

Sensory fusion: e, = tanh(Wy¢[hi;hi]+by)  (11)

vt = softmax(Wye; + by) (12)

where W, and b, are model parameters, and LSTM,
and LSTM, process the sensory streams (xi,...,x7) and

(z1, ..., z7) respectively. The same framework can be ex-
tended to handle more sensory streams.
C. Exponential loss-layer for anticipation.

We propose a new loss layer which encourages the ar-
chitecture to anticipate early while also ensuring that the

!Driving maneuvers can take up to 6 seconds and the value of T can go
up to 150 with a camera frame rate of 25 fps.

architecture does not over-fit the training data early enough in
time when there is not enough context for anticipation. When
using the standard softmax loss, the architecture suffers a
loss of —log(yF) for the mistakes it makes at each time
step, where ¥ is the probability of the ground truth event k&
computed by the architecture using Eq. (12). We propose to
modify this loss by multiplying it with an exponential term
as illustrated in Figure E} Under this new scheme, the loss
exponentially grows with time as shown below.

N T
loss = Z Z —e~ T Jog(y*)

j=1t=1
This loss penalizes the RNN exponentially more for the mis-
takes it makes as it sees more observations. This encourages
the model to fix mistakes as early as it can in time. The loss in
equation [I3]also penalizes the network less on mistakes made
early in time when there is not enough context available. This
way it acts like a regularizer and reduces the risk to over-fit
very early in time.

13)

D. Model training and data augmentation

Our architecture for maneuver anticipation has more than
25,000 parameters that need to be learned (Section E)
With such a large number of parameters on a non-convex
manifold, over-fitting becomes a major challenge. We there-
fore introduce redundancy in the training data which acts
like a regularizer and reduces over-fitting [23| [15]]. In or-
der to augment training data, we extract sub-sequences
of temporal observations. Given a training example with
two temporal sensor streams {(X1,...,X7), (21,...,27), ¥},
we uniformly randomly sample multiple sub-sequences
{(%4,..s%j), (24, ...,25),y]1 < i < j < T} as additional
training examples. It is important to note that data augmenta-
tion only adds redundancy and does not rely on any external
source of new information.

On the augmented data set, we train the network described
in Section We use RMSprop gradients which have
been shown to work well on training deep networks [7],
and we keep the step size fixed at 10~*. We experimented
with different variants of softmax loss, and our proposed
loss-layer with exponential growth Eq. (I3) works best for
anticipation (see Section for details).

V. CONTEXT FOR MANEUVER ANTICIPATION

In maneuver anticipation the goal is to anticipate the
driver’s future maneuver several seconds before it hap-
pens [19, 27|]. The contextual information for anticipation
is extracted from sensors installed in the vehicle. Previous
work from Jain et al. [[19] considers the context from a driver
facing camera, a camera facing the road in front, a Global
Positioning System (GPS), and an equipment for recording
the vehicle’s dynamics. The overall contextual information
from the sensors is grouped into: (i) the context from inside
the vehicle, which comes from the driver facing camera and
is represented as temporal sequence of features (x1, ..., Xr);
and (ii) the context from outside the vehicle, which comes
from remaining sensors and is represented as (z1, ..., Z7).

We improve the pipeline from Jain et al. [[19] with our
deep learning architecture and new features for maneuver



(a) Face Tracking (b) Computing features vectors

t=0 t
Inside Features Qutside context

Facial landmarks and pose

(c) Sequence of feature vectors (d) Fusion RNN (e) Output
Tt 1 1

Left L.
- - - e O O O O M Left Lane
.07 .06 .09 Right Lane
.
Pl e IIT MRl

ight Turn
i -.“ LS
- - - Networks m Straight
L ! Tt t1r1
Xy X X Inside Outside

Features Features Ile I

Fig. 5: Maneuver anticipation pipeline. Temporal context in maneuver anticipation comes from cameras facing the driver and the road,
the GPS, and the vehicle’s dynamics. (a, b and ¢) We improve upon the vision pipeline from Jain et al. by tracking 68 landmark
points on the driver’s face and including the 3D head-pose features. (d) Using the Fusion-RNN we combine the sensory streams of features
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Fig. 6: Improved features for maneuver anticipation. We track
facial landmark points using the CLNF tracker [3] which results in
more consistent 2D trajectories as compared to the KLT tracker [32]]

used by Jain et al. [19]. Furthermore, the CLNF also gives an
estimate of the driver’s 3D head pose.
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anticipation. Figure [5] shows our complete pipeline. In order
to anticipate maneuvers, our RNN architecture (Figure [4)
processes the temporal context {(x1,...,X¢), (Z1,...,2¢)} at
every time step ¢, and outputs softmax probabilities y; for
the following five maneuvers: M = {left turn, right turn, left
lane change, right lane change, straight driving}. We now
give an overview of the feature representation used by Jain
et al. [19] and then describe our features which significantly
improve the performance.

A. Features for maneuver anticipation

In the vision pipeline of Jain et al. [19], the driver
facing camera detects discriminative points on the driver’s
face and tracks the detected points across frames using the
KLT tracker [32]. The tracking generates 2D optical flow
trajectories in the image plane. From these trajectories the
horizontal and angular movements of the face are extracted,
and these movements are binned into histogram features for
every frame. These histogram features are aggregated over 20
frames (i.e. 0.8 seconds of driving) and constitute the feature
vector x; € RY. Further context for anticipation comes
from the camera facing the road, the GPS, and the vehicle’s
dynamics. This is denoted by the feature vector z; € RS,
and includes the lane information, the road artifacts such as
intersections, and the vehicle’s speed. We refer the reader to
Jain et al. [19] for more information on their features.

B. 3D head pose and facial landmark features

We now propose new features for maneuver anticipation
which significantly improve upon the features from Jain et
al. [19]. Instead of tracking discriminative points on the
driver’s face we use the Constrained Local Neural Field
(CLNF) model and track 68 fixed landmark points on
the driver’s face. CLNF is particularly well suited for driving
scenarios due its ability to handle a wide range of head pose
and illumination variations. As shown in Figure [f] CLNF
offers us two distinct benefits over the features from Jain
et al. (1) while discriminative facial points may change
from situation to situation, tracking fixed landmarks results in
consistent optical flow trajectories which adds to robustness;
and (ii) CLNF also allows us to estimate the 3D head pose
of the driver’s face by minimizing error in the projection of a
generic 3D mesh model of the face w.r.t. the 2D location of
landmarks in the image. The histogram features generated
from the optical flow trajectories along with the 3D head
pose features (yaw, pitch and row), give us x; € R!2.

In Section [VI] we present results with the features from
Jain et al. [19], as well as the results with our improved
features obtained from the CLNF model.

VI. EXPERIMENTS

We evaluate our proposed architecture on the task of
maneuver anticipation [36]]. This is an impor-
tant problem because in the US alone 33,000 people die
in road accidents every year — a majority of which are
due to dangerous maneuvers. Advanced Driver Assistance
Systems (ADAS) have made driving safer by alerting drivers
whenever they commit a dangerous maneuver. Unfortunately,
many accidents are unavoidable because by the time drivers
are alerted it is already too late. Maneuver anticipation can
avert many accidents by alerting drivers before they perform
a dangerous maneuver [30].

We evaluate on the driving data set publicly released by
Jain et al. [19]. The data set consists of 1180 miles of
natural freeway and city driving collected from 10 drivers
over a period of two months. It contains videos with both
inside and outside views of the vehicle, the vehicle’s speed,
and GPS coordinates. The data set is annotated with 700
events consisting of 274 lane changes, 131 turns, and 295
randomly sampled instances of driving straight. Each lane



change and turn is also annotated with the start time of
the maneuver, i.e. right before the wheel touches the lane
marking or the vehicle yaws at the intersection, respectively.
We augment the data set using the technique described
in Section and generate 2250 events from the 700
original events. We train our deep learning architectures
on the augmented data. We will make our code for data
augmentation and maneuver anticipation publicly available
at: http://www.braindcars.com

We compare our deep RNN architecture with the following
baseline algorithms:

1) Chance: Uniformly randomly anticipates a maneuver.

2) Random-forest: A discriminative classifier that learns
an ensemble of 150 decision trees.

3) SVM [27)]: Support Vector Machine classifier used by
Morris et al. [27] for maneuver anticipation.

4) IOHMM [|19]: Input-Output Hidden Markov Model [5]
used by Jain et al. [19] for maneuver anticipation.

5) AIO-HMM [19]: This model extends IOHMM by in-
cluding autoregressive connections in the output layer.
AIO-HMM achieved state-of-the-art performance in
Jain et al. [19].

In order to study the effect of our design choices we also
compare the following modifications of our architecture:

6) Simple-RNN (S-RNN): In this architecture sensor
streams are fused by simple concatenation and then
passed through a single RNN with LSTM units.

7) Fusion-RNN-Uniform-Loss (F-RNN-UL): In this ar-
chitecture sensor streams are passed through separate
RNNS, and the high-level representations from RNNs
are then fused via a fully-connected layer. The loss at
each time step takes the form — log(yF).

8) Fusion-RNN-Exp-Loss (F-RNN-EL): This architecture
is similar to F-RNN-UL, except that the loss exponen-
tially grows with time —e~(7=% log(yF).

We use the RNN and LSTM implementations provided by
Jain [18]]. In our RNNs we use a single layer LSTM of size 64
with sigmoid gate activations and tanh activation for hidden
representation. Our fully connected fusion layer uses tanh
activation and outputs a 64 dimensional vector. Our overall
architecture (F-RNN-EL and F-RNN-UL) have nearly 25,000
parameters that are learned using RMSprop [7]]. The model
training takes less than an hour on a K40 GPU.

A. Evaluation setup

We follow an evaluation setup similar to Jain et al. [[19].
Algorithm 1| shows the inference steps for maneuver antici-
pation. At each time step ¢, features x; and z; are computed
over the last 0.8 seconds of driving (20 frames). Using the
temporal context {(xi,...,X¢), (Z1,...,2¢)}, each anticipa-
tion algorithm computes the probability y; for maneuvers in
M = {left lane change, right lane change, left turn, right
turn, driving straight}. The prediction threshold is denoted
by pin € (0,1] in Algorithm [1] The algorithm predicts
driving straight if none of the softmax probabilities for the
other maneuvers exceeds pyp,.

Algorithm 1 Maneuver anticipation

Initialize m* = driving straight
Input Features {(x1,...,X7),(21,...,27)} and prediction
threshold pyp,
Output Predicted maneuver m*
while ¢ =1 to T" do
Observe features (x1,...,x;) and (21, ...,2Z;)
Estimate probability y; of each maneuver in M
my = arg max,,c , Yt
if m} # driving straight & y{m;} > py, then
m* =mj
tbefore =T-t
break
end if
end while
Return m™, tyefore

In order to evaluate an anticipation algorithm, we compute
the following quantities for each maneuver m € M: (i)
N,,: the total number of instances of maneuver m; (ii)
TP,,: the number of instances of maneuver m correctly
predicted by the algorithm; and (iii) FP,,: the number of
times the algorithm predicts m. Based on these quantities we
evaluate the precision and recall of an anticipation algorithm
as defined below:

1 TP,,
Fr=1a—1 > (Pm)

m € MN\{driving straight}
1 TP
= 2 ()
meEM\{driving straight}

We should note that driving straight maneuver is not
included in evaluating precision and recall (T5). This
is because anticipation algorithms by default predict driving
straight when they are not confident about other maneuvers.
For each anticipation algorithm, we choose a prediction
threshold p;;, that maximizes their F'1 score: F'1 = 2% Pr %
Re/(Pr + Re). In addition to precision and recall, we also
measure the interval between the time an algorithm makes a
prediction and the start of maneuver. We refer to this as the
time-to-maneuver and denote it with ¢y fore in Algorithm [T}
We uniformly randomly partition the data set into five folds
and report results using 5-fold cross-validation. We train on
four folds and test on the fifth fold, and report the metrics
averaged over the five folds.

B. Results

We evaluate anticipation algorithms on the maneuvers
not seen during training with the following three prediction
settings: (i) Lane change: algorithms only anticipate lane
changes, i.e. M = {left lane change, right lane change,
driving straight}. This setting is relevant for freeway driving;
(ii) Turns: algorithms only anticipate turns, i.e. M = {left
turn, right turn, driving straight}; and (iii) All maneuvers:
algorithms anticipate all five maneuvers. Among these pre-
diction settings, predicting all five maneuvers is the hardest.

(14)

15)

Table [I[] compares the performance of the baseline antic-
ipation algorithms and the variants of our deep learning
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TABLE I: Maneuver Anticipation Results. Average precision, recall and time-to-maneuver are computed from 5-fold cross-validation.
Standard error is also shown. Algorithms are compared on the features from Jain et al. [19].

Lane change Turns All maneuvers
Method Pr (%) Re (%) m;i:fv;;’ © | Pr® Re (%) m;;‘lie‘f o | Preo Re (%) m;g’l‘fvg’ ©

Chance 333 333 - 333 - 20.0 20.0 -
SVM [27] | 73.7 £34 578 £28 2.40 647 £ 65 472+76 2.40 437 +24 377+18 1.20
Random-Forest | 71.2 =24 534 £ 32 3.00 68.6 3.5 444 £35 1.20 519+ 1.6 277 £ 1.1 1.20
IOHMM [19] | 81.6 £ 1.0 79.6 £19 3.98 776 £33 759 +25 4.42 742+ 17 712+ 1.6 3.83
AIO-HMM [19] | 83.8 £ 1.3 792 29 3.80 80.8 =34 752 +24 4.16 774 +£23 712+ 13 3.53
S-RNN | 854 +0.7 86.0+ 14 3.53 752+ 14 753 2.1 3.68 780 15 71.1£10 3.15
Our F-RNN-UL | 92.7 £ 2.1 844 +£28 3.46 812 £35 786 +128 3.94 8224+ 10 759+£15 3.75
Methods F-RNN-EL | 882 + 14 86.0 £ 0.7 3.42 838+ 21 799 +35 3.78 845+10 77113 3.58

model. All algorithms in Table [l were evaluated on the
features provided by Jain et al. [19], which ensures a fair
comparison. We observe that variants of our architecture
outperform the previous state-of-the-art a majority of the
time. This improvement in performance is because RNNs
with LSTM units are very expressive models, and unlike
Jain et al. [19] they do not make any assumption about the
generative nature of the problem.

The performance of several variants of our architecture,
reported in Table |l justifies our design decisions to reach
the final architecture as discussed here. S-RNN performs a
very simple fusion by concatenating the two sensor streams.
On the other hand, F-RNN models each sensor stream with
a separate RNN and then uses a fully connected layer at
each time step to fuse the high-level representations. This
form of sensory fusion is more principled since the sensor
streams represent different data modalities. Fusing high-level
representations instead of concatenating raw features gives a
significant improvement in performance, as shown in Table
When predicting all maneuvers, F-RNN-EL has a 6% higher
precision and recall than S-RNN.

As shown in Table exponentially growing the loss
improves performance. Our new loss scheme penalizes the
network proportional to the length of context it has seen.
When predicting all maneuvers, we observe that F-RNN-EL
shows an improvement of 2% in precision and recall over
F-RNN-UL. We conjecture that exponentially growing the
loss acts like a regularizer. It reduces the risk of our network
over-fitting early in time when there is not enough context
available. Furthermore, the time-to-maneuver remains com-
parable for F-RNN with and without exponential loss.

We study the effect of our improved features in Table
We replace the pipeline for extracting features from the
driver’s face [19] by a Constrained Local Neural Field
(CLNF) model [3]. Our new vision pipeline tracks 68 facial
landmark points and estimates the driver’s 3D head pose as
described in Section [V-A] We see a significant, 6% increase
in precision and 10% increase in recall of F-RNN-EL when
using features from our new vision pipeline. This increase
in performance is attributed to the following reasons: (i)
robustness of CLNF model to variations in illumination and
head pose; (ii) 3D head-pose features are very informative
for understanding the driver’s intention; and (iii) optical
flow trajectories generated by tracking facial landmark points
represent head movements better, as shown in Figure @

The confusion matrix in Figure [/| shows the precision
for each maneuver. F-RNN-EL gives a higher precision
than AIO-HMM on every maneuver when both algorithms

TABLE II: 3D head-pose features. In this table we study the effect
of better features with best performing algorithm from Table [I} in
‘All maneuvers’ setting. We use [3|] to track 68 facial landmark
points and estimate 3D head-pose.

Method Pr (%) Re (%) ~lime-to-
maneuver (s)
F-RNN-EL 845+10 77113 3.58
F-RNN-EL w/ 3D head-pose | 90.5 + 1.0 874 £+ 0.5 3.16
90
85|
80|
@
[=}
@ 75
- 70
65 BB AIO-HMM
a4 F-RNN-EL
= F-RNN-EL w/ 3D-pose features
60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold (p,,)

Fig. 8: Effect of prediction threshold p.;. At test time an
algorithm makes a prediction only when it is at least p;, confident
in its prediction. This plot shows how Fl-score vary with change
in prediction threshold.

are trained on same features (Fig. ). Our new vision
pipeline further improves the precision of F-RNN-EL on all
maneuvers (Fig. [7d). Additionally, both F-RNN and AIO-
HMM perform significantly better than previous work on
maneuver anticipation by Morris et al. [27] (Fig. ).

In Figure [8| we study how Fl-score varies as we change
the prediction threshold p;,. We make the following obser-
vations: (i) The Fl-score does not undergo large variations
with changes to the prediction threshold. Hence, it allows
practitioners to fairly trade-off between the precision and
recall without hurting the Fl-score by much; and (ii) the
maximum F1-score attained by F-RNN-EL is 4% more than
AIO-HMM when compared on the same features and 13%
more with our new vision pipeline. In Tables [[] and [[I] we
used the threshold values which gave the highest F1-score.

VII. CONCLUSION

In this work we addressed the problem of anticipating
maneuvers several seconds before they happen. This problem
requires the modeling of long temporal dependencies and
the fusion of multiple sensory streams. We proposed a
novel deep learning architecture based on Recurrent Neural
Networks (RNNs) with Long Short-Term Memory (LSTM)
units for anticipation. Our architecture learns to fuse multiple
sensory streams, and by training it in a sequence-to-sequence
prediction manner, it explicitly learns to anticipate using only
a partial temporal context. We also proposed a novel loss
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Fig. 7: Confusion matrix of different algorithms when jointly predicting all the maneuvers. Predictions made by algorithms are represented
by rows and actual maneuvers are represented by columns. Numbers on the diagonal represent precision.

layer for anticipation which prevents over-fitting.

Our deep learning architecture outperformed the previous
state-of-the-art on 1180 miles of natural driving data set.
It improved the precision from 78% to 84.5% and recall
from 71.1% to 77.1%. We further showed that improving
head tracking and including the driver’s 3D head pose
as a feature gives a significant boost in performance by
increasing the precision to 90.5% and recall to 87.4%. We
believe that our approach is widely applicable to many
activity anticipation problems. As more anticipation data
sets become publicly available, we expect to see a similar
improvement in performance with our architecture.
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