Planlt: A Crowdsourcing Approach for Learning to Plan Paths
from Large Scale Preference Feedback

Ashesh Jain, Debarghya Das, Jayesh K. Gupta and Ashutosh Saxena

Abstract— We consider the problem of learning user prefer-
ences over robot trajectories for environments rich in objects
and humans. This is challenging because the criterion defining
a good trajectory varies with users, tasks and interactions in
the environment. We represent trajectory preferences using a
cost function that the robot learns and uses it to generate good
trajectories in new environments. We design a crowdsourcing
system - Planlt, where non-expert users label segments of the
robot’s trajectory. Planlt allows us to collect a large amount of
user feedback, and using the weak and noisy labels from PlanIt
we learn the parameters of our model. We test our approach
on 122 different environments for robotic navigation and
manipulation tasks. Our extensive experiments show that the
learned cost function generates preferred trajectories in human
environments. Our crowdsourcing system is publicly available
for the visualization of the learned costs and for providing
preference feedback: http://planit.cs.cornell.edu

I. INTRODUCTION

One key problem robots face in performing tasks in human
environments is identifying trajectories desirable to the users.
In this work we present a crowdsourcing system Planlt that
learns user preferences by taking their feedback over the
Internet. In previous works, user preferences are usually
encoded as a cost over trajectories, and then optimized
using planners such as RRT* [1], CHOMP [2], TrajOpt [3].
However, most of these works optimize expert-designed cost
functions based on different geometric and safety criteria [4],
[5], [6]. While satisfying safety criteria is necessary, they
alone ignore the contextual interactions in human environ-
ments [7]. We take a data driven approach and learn a
context-rich cost over the trajectories from the preferences
shown by non-expert users.

In this work we model user preferences arising during hu-
man activities. Humans constantly engage in activities with
their surroundings — watching TV or listening to music, etc. —
during which they prefer minimal interruption from external
agents that share their environment. For example, a robot that
blocks the view of a human watching TV is not a desirable
social agent. How can a robot learn such preferences and
context? This problem is further challenging because human
environments are unstructured, and as shown in Fig. [I] an
environment can have multiple human activities happening
simultaneously. Therefore generalizing the learned model to
new environments is a key challenge.

We formulate the problem as learning to ground each
human activity to a spatial distribution signifying regions
crucial to the activity. We refer to these spatial distributions
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Fig. 1: Various human activities with the objects in the environ-
ment affect how a robot should navigate in the environment. The
figure shows an environment with multiple human activities: (1)
two humans interacting, (2) watching, (3) walking, (4) working, (5)
sitting, and (6) reaching for a lamp. We learn a spatial distribution
for each activity, and use it to build a cost map (aka planning
affordance map) for the complete environment. Using the cost map,
the robot plans a preferred trajectory in the environment.

as planning aﬂordancesﬂ and parameterize the cost function
using these distributions. Our affordance representation is
different by relating to the object’s functionality, unlike
previous works which have an object centric view. The
commonly studied discrete representation of affordances [9],
[10], [11], [12] are of limited use in planning trajectories. For
example, a TV has a watchable affordance and undergoes a
watching activity, however these labels themselves are not
informative enough to convey to the robot that it should
not move between the user and the TV. The grounded
representation we propose in this work is more useful for
planning tasks than the discrete representations.

To generalize well across diverse environments we develop
a crowdsourcing web-service PlanIt to collect large-scale
preference data. On Planlt we show short videos (mostly
< 15 sec) to non-expert users of the robot navigating in
context-rich environments with humans performing activ-
ities. As feedback users label segments of the videos as
good, bad or neutral. While previous methods of eliciting
feedback required expensive expert demonstrations in limited
environments, Planlt is usable by non-expert users and scales
to a large number of environments. This simplicity comes at
the cost of weak and noisy feedback. We present a generative
model of the preference data obtained.

We evaluate our approach on a total of 122 bedroom and
living room environments. We use OpenRave [13] to generate
trajectories in these environments and upload them to Planlt

!Gibson [8] defined object affordances as possible actions that an agent
can perform in an environment.
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database for user feedback. We quantitatively evaluate our
learned model and compare it to previous works on human-
aware planning. Further, we validate our model on the PR2
robot to navigate in human environments. The results show
that our learned model generalizes well to the environments
not seen before.

In the following sections, we formally state the planning
problem, give an overview of the Planlt engine in Section[[V]
discuss the cost parametrization through affordance in Sec-
tion describe the learning algorithm in Section
and show the experimental evaluation in Section

II. RELATED WORK

Learning from demonstration (LfD). One approach to
learning preferences is to mimic an expert’s demonstrations.
Several works have built on this idea such as the autonomous
helicopter flights [14], the ball-in-a-cup experiment [15],
planning 2-D paths [16], etc. These approaches are applicable
in our setting. However, they are expensive in that they
require an expert to demonstrate the optimal trajectory. Such
demonstrations are difficult to elicit on a large scale and over
many environments. Instead we learn with preference data
from non-expert users across a wide variety of environments.

Planning from a cost function. In many applications, the
goal is to find a trajectory that optimizes a cost function. Sev-
eral works build upon the sampling based planner RRT [17],
[1] to optimize various cost heuristics [18], [19]. Some
approaches introduce sampling bias [20] to guide the planner.
Alternative approaches include recent trajectory optimizers
CHOMP [2] and TrajOpt [3]. We are complementary to
these works in that we learn a cost function while the above
approaches optimize cost functions.

Modeling human motion for navigation path. Sharing
environment with humans requires robots to model and
predict human navigation patterns and generate socially
compliant paths [21], [22], [23]. Recent works [24], [25],
[26] model human motion to anticipate their actions for
better human-robot collaboration. Instead we model the
spatial distribution of human activities and the preferences
associated with those activities.

Affordances in robotics. Many works in robotics have
studied affordances. Most of the works study affordance as
cause-effect relations, i.e. the effects of robot’s actions on
objects [9], [27], [28], [10]. We differ from these works in the
representation of affordance and in its application to planning
user preferred trajectories. Further, we consider context-rich
environments where humans interact with various objects,
while such context was not important to previous works.
Similar to Jiang et al. [29], our affordances are also distri-
butions, but they used them for scene arrangement while we
use them for planning.

User preferences in path planning. User preferences
have been studied in human-robot interaction literature. Sis-
bot et al. [4], [30] and Mainprice et al. [6] planned trajecto-
ries satisfying user specified preferences such as the distance
of the robot from humans, visibility of the robot and human
arm comfort. Dragan et al. [31] used functional gradients [2]
to optimize for legibility of robot trajectories. We differ from
these in that we learn the cost function capturing preferences

Fig. 2: Preference-based Cost calculation of a trajectory. The
trajectory T4 is preferred over Tp because it does not interfere with
the human activities. The cost of a trajectory decomposes over the
waypoints t;, and the cost depends on the location of the objects
and humans associated with an activity.

arising during human-object interactions. Jain et al. [32], [7]
learned a context-rich cost via iterative feedback from non-
expert users. Similarly, we also learn from the preference
data of non-expert users. However, we use crowdsourcing
like Chung et al. [33] for eliciting user feedback which
allows us to learn from large amount of preference data. In
experiments, we compare against Jain’s trajectory preference
perceptron algorithm.

III. CONTEXT-AWARE PLANNING PROBLEM

The planning problem we address is: given a goal con-
figuration G and a context-rich environment E (containing
objects, humans and activities), the algorithm should output
a desirable trajectory 7. We consider navigation trajectories
and represent them as a sequence of discrete 2D waypoints,
ie., T = {t1,...,t,}. Our model is easily extendable to
higher dimensional manipulation trajectories, we demon-
strate this in Section [VI-G|

In order to encode the user’s desirability we use a positive
cost function W(-) that maps trajectories to a scalar value.
Trajectories with lower cost indicate greater desirability. We
denote the cost of trajectory T in environment E as ¥ (7| E)
where W is defined as:

PE:T—R

The context-rich environment F comprises humans, ob-
jects and activities. Specifically, it models the human-human
and human-object interactions. The robot’s goal is to learn
the spatial distribution of these interactions in order to plan
good trajectories that minimally interrupt human activities.
The key challenge here lies in designing an expressive cost
function that accurately reflects user preferences, captures
the rich environment context, and can be learned from data.

Fig. illustrates how the cost of a trajectory is the
cumulative effect of the environment at each waypoint. We
thus define a trajectory’s cost as a product of the costs over
each waypoint:

W(T = {t1, ot} B) = [ ] Wau (8l ) )

In the above equation, U, (¢;|E) is the cost of waypoint
t; and its always positive}| Because user preferences vary
over activities, we learn a separate cost for each activity.
U,(+) denotes the cost associated with an activity a € E.

2Since the cost is always positive, the product of costs in Equation (@ is
equivalent to the sum of logarithmic cost.
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Fig. 3: An illustration of our Planlt system. Our learning
system has three main components (i) cost parameterization through
affordance; (ii) The Planlt engine for receiving user preference
feedback; and (iii) Learning algorithm. (Best viewed in color)

The robot navigating along a trajectory often interferes with
multiple human activities e.g., trajectory 75 in Fig. 2} Thus
we associate with each waypoint ¢; an activity a; it interacts
with, as illustrated in Eq. (I).

The cost function changes with the activities happening in
the environment. As illustrated in Fig. [2] the robot prefers the
trajectory T4 over the otherwise preferred shorter trajectory
Tr because the latter interferes with human interactions (e.g.,
H, is watching TV).

IV. PLANIT: A CROWDSOURCING ENGINE

Rich data along with principled learning algorithms have
achieved much success in robotics problems such as grasp-
ing [34], [35], [36], manipulation [37], trajectory model-
ing [38] etc. Inspired by such previous works, we design
Planlt: a scalable approach for learning user preferences
over robot trajectories across a wide-variety of environments:
http://planit.cs.cornell.edu

On Planlt’s webpage users watch videos of robot nav-
igating in contextually-rich environments and reveal their
preferences by labeling video segments (Fig. @). We keep
the process simple for users by providing three label choices
{bad, neutral, good}. For example, the trajectory segments
where the robot passes between a human and TV can be
labeled as bad, and segments where it navigates in open space
as neutral. We now discuss three aspects of Planlt.

A. Weak labels from Planlt: In Planlt’s feedback process,
users only label parts of a trajectory (i.e. sub-trajectory) as
good, bad or neutral. For the ease of usability and to reduce
the labeling effort, users only provide the labels and do
not reveal the (latent) reason for the labels. We capture the
user’s intention as a latent variable in the learning algorithm
(discussed in Section [V-B).

The user feedback in Planlt is in contrast to other learning-
based approaches such as learning from the expert’s demon-
strations (LfD) [14], [15], [16], [39] or the co-active feed-
back [32], [7]. In both LfD and co-active learning approaches
it is time consuming and expensive to collect the preference
data on a robotic platform and across many environments.
Hence these approaches learn using limited preference data
from users. On the other hand, Planlt’s main objective is
to leverage the crowd and learn from the non-expert users
across a large number of environments.

B. Generating robot trajectory videos: We sample many
trajectories (using RRT [17]) for the PR2 robot in human
environments using OpenRAVE [13]. We video record these

il

Fig. 4: Planlt Interface. Screenshot of the Planlt video labeling
interface. The video shows a human walking towards the door
while other human is browsing books, with text describing the
environment on left. As feedback the user labels the time interval
where the robot crosses the human browsing books as red, and
the interval where the robot carefully avoids the walking human as
green. (Best viewed in color)

trajectories and add them to Planlt’s trajectory database. The
users watch the short videos of the PR2 interacting with
human activities, and reveal their preferences. We also ensure
that trajectories in the database are diverse by following the
ideas presented in [40], [32]. As of now the PlantIt’s database
has 2500 trajectories over 122 environments. In Section [V]]
we describe the data set.

C. Learning system: In our learning system, illustrated in
Fig. 3] the learned model improves as more preference data
from users become available. We maintain an affordance
library with spatial distributions for each human activity.
When the robot observes an environment, it uses the dis-
tributions from the library and builds a planning affordance
map (aka cost function) for the environment. The robot then
samples trajectories from the cost function and presents them
on the Planlt engine for feedback.

V. LEARNING ALGORITHM

We first discuss our parameterization of the cost function
and then the procedure for learning the model parameters.

A. Cost Parameterization through Affordance

In order to plan trajectories in human environments we
model the human-object relationships. These relationships
are called ‘object affordances’. In this work we model the
affordances such that they are relevant to path planning and
we refer to them as ‘planning affordances’.

Specifically, we learn the spatial distribution of the human-
object interactions. For example, a TV has a watchable af-
fordance and therefore the space between the human and the
TV is relevant for the watching activity. Since a watchable
label by itself is not informative enough to help in planning
we ground it to a spatial distribution. Fig. [6(a) illustrates
the learned spatial distribution when the human watches TV.
Similarly, a chair is sittable and moveable, but when in use
the space behind the chair is critical (because the human
sitting on it might move back).

We consider the planning affordance for several activities
(e.g., watching, interacting, working, sitting, etc.). For each
activity we model a separate cost function ¥, and evaluate
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(b) Watching
Fig. 5: Result of learned edge preference. Distance between
human and object is normalized to 1. Human is at 0 and object
at 1. For interacting activity, edge preference is symmetric between
two humans, but for watching activity humans do not prefer the
robot passing very close to them.
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Fig. 6: An example the learned planning affordance. In the top-
view, the human is at the center and facing the object on the right
(1m away). Dimension is 2mx2m. (Best viewed in color)
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trajectories using Eq. (T). We consider two classes of activi-
ties: in the first, the human and object are in close proximity
(sitting, working, reaching etc.) and in the second, they
are at a distance (walking, watching, interacting etc.). The
affordance varies with the distance and angle between the
human and the object. We parameterize the cost as follows:

Vy.ang,h Ya,ang.o Ya,3
if a € activities with human and
object at distance.
U, (t|E) = 2
Ya,ang,h Ya,dist,h
if a € activities with human and

object in close proximity.

Angular preference U, qnq(-): Certain angular positions
w.r.t. the human and the object are more relevant for certain
activities. For example, the spatial distribution for the watch-
ing activity is spread over a wider angle than the interacting
activity (see Fig. [6). We capture the angular distribution of
the activity in the space separating the human and the object
with two cost functions Vg 4ng,n and ¥y ong,0, centered at
human and object respectively. For activities with close-
proximity between the human and the object we define a
single cost centered at human. We parameterize the angular
preference cost using the von-Mises distribution as:
1

‘Ija,ang,(~) (Xti§ My K) = m eXp(KJ/},TXti) (3)
In the above equation, y and x are parameters that we will
learn from the data, and x;, is a two-dimensional unit vector.
As illustrated in Fig. |Z|, we obtain x;, by projecting the
waypoint ¢; onto the co-ordinate frame (x and y axis) defined
locally for the human-object activity.
Distance preference ¥, ;5. The preferences vary with the

robot distance from the human and the object. Humans do not
prefer robots very close to them, especially when the robot

Fig. 7: Human side of local co-ordinate system for watching
activity. Similar co-ordinates are defined for the object human
interacts with. Unit vector x;, is the projection of waypoint ¢; on
-y axis and normalized it by its length. Distance between human
and object is d—,, and ¢; projected on z-axis is of length dy,.

is right-in-front or passes from behind [4]. Fig. [6c shows the
cost function learned by Planlt. It illustrates that working
humans do not prefer robots passing them from behind. We
capture this by adding a 1D-Gaussian parameterized by a
mean and variance, and centered at human.

Edge preference VU, 3: For activities where the human and
the object are separated by a distance, the preferences vary
along the line connecting human and object. We param-
eterize this cost using a beta distribution which captures
the relevance of the activity along the human-object edge.
Fig. [f] illustrates that in the warching activity users prefer
robots to cross farther away from them, whereas for the
interacting activity the preference is symmetric w.r.t. the
humans. To calculate this cost for the waypoint t;, we first
take its distance from the human and project it along the line
joining the human and the object d;,, and then normalize it
by the distance dj_, between the human and the object.
The normalized distance is (fti = d;,/dp—o- In the equation
below, we learn the parameters o and [3.

_ dy (1 —dy,)P 7t
\Pa,ﬁ(dtiaavﬁ) B(Oé,ﬂ)
The functions used in Eq. (I thus define our cost function.
This, however, has many parameters (30) that need to be
learned from data.

P dy, €[0,1] (4

B. Generative Model: Learning the Parameters

Given the user preference data from Planlt we learn the pa-
rameters of Eq. (I). In order to keep the data collection easy
we only elicit labels (bad, neutral or good) on the segments
of the videos. The users do not reveal the human activity
they think is being affected by the trajectory waypoint they
labeled. In fact a waypoint can influence multiple activities.
As illustrated in Fig. [§] a waypoint between the humans and
the TV can affect multiple watching activities.

We define a latent random variable z% € {0,1} for the
waypoint ¢;; which is 1 when the waypoint ¢; affects the
activity a and O otherwise. From the user preference data
we learn the following cost function:

k
V({t, ot} 1E) = [ 32 pGIE) WaltlE) )

i=la€AR

Marginalizing latent variable zi

In the above equation, p(z|E) (denoted with 7,) is the
(prior) probability of user data arising from activity a, and



Fig. 8: Watching activity. Three humans watching a TV.
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Fig. 9: Feedback model. Generative model of the user preference
data.
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Apg is the set of activities in environment EEl Fig. El shows
the generative process for preference data.

Training data: We obtain users preferences over n environ-
ments Fy,.., E,. For each environment £ we consider m
trajectory segments 7g 1,.., Tg,m labeled as bad by users.
For each segment 7 we sample k& waypoints {¢7 1, .., t7 }.
We use © € R3Y to denote the model parameters and solve
the following maximum likelihood problem:

0" = argmax [ [ [[ ©(7z. ;1 E::0)
i=1j=1
n m k
agmax [JT[[] 3 pcL1E::€)
= © i=1j=11=1a€Ag, (6)

\Ila(tTEi,j,l |E17 @)
Eq. (6) does not have a closed form solution. We follow
the Expectation-Maximization (EM) procedure to learn the
model parameters. In the E-step we calculate the posterior
activity assignment p(Zé|tTEi,j,l,Ei) for all the waypoints,
and in the M-step we update the parameters.
E-step: In this step, with fixed model parameters, we calcu-
late the posterior probability of an activity being affected by
a waypoint, as follows:
ZQGAE p(za|E5 ©) U, (t|E; ©)
We calculate the above probability for every activity a and
the waypoint ¢ labeled by users in our data set.

p(zalt, E;©) =

M-step: Using the probabilities calculated in the E-step
we update the model parameters in the M-step. Our affor-
dance representation consists of three distributions, namely:
Gaussian, von-Mises and Beta. We update the parameters
of the Gaussian, and the mean (u) of the von-Mises in
closed form. To update the variance (x) of the von-Mises we
follow the first order approximation proposed by Sra [41].
Finally the parameters of the beta distribution (o and f)
are updated approximately by using the first and the second

3We extract the information about the environment and activities by
querying OpenRAVE. In practice and in the robotic experiments, human
activity information can be obtained using the software package by Koppula
et al. [11].

Fig. 10: Examples from our dataset: four living room and two
bedroom environments. On left is the 2D image we download from
Google images. On right are the 3D reconstructed environments in
OpenRAVE. All environments are rich in the types and number of
objects and often have multiple humans perform different activities.
(Best view: Zoom and view in color)

order moments of the data. As an example below we give
the M-step update of the mean p, of the von-Mises.

n m k
21:1 Zj:l lel p(ZthTEi ,j,l}7 Ei)x{tTEiwj,z}
= n m k
| S S pC i, 3 B)xper, o
(8

[ha

)
We provide the detailed derivation of the E and M-step in
the supplementary materialEl

VI. EXPERIMENTS AND RESULTS

Our data set consists of 122 context-rich 3D-environments
that resemble real living rooms or bedrooms. We create them
by downloading 2D-images of real environments from the
Google images and reconstructing their corresponding 3D
models using OpenRAVE [13]ﬂ We depict human activities
by adding to the 3D models different human poses obtained
from the Kinect (refer Fig. 3 in [29] for the human poses). In
our experiments we consider six activities: walking, watch-
ing, interacting, reaching, sitting and working as shown in
Fig. 1}

For these environments we generate trajectory videos and
add them to the Planlt database. We crowdsource 2500
trajectory videos through Planlt and for each trajectory a user
labeled segments of it as bad, neutral or good, corresponding
to the scores 1, 3 and 5 respectively.

A. Baseline algorithms
We consider the following baseline cost functions:

e Chance: Uniformly randomly assigns a cost in interval
[0,1] to a trajectory.

o Maximum Clearance Planning (MCP): Inspired by Sisbot
et al. [4], this heuristic favors trajectories which stay
farther away from objects. The MCP cost of a trajectory is
the (negated) root mean square distance from the nearest
object across the trajectory waypoints.

4http://planit.cs.cornell.edu/supplementary.pdf
SFor reconstructing 3D environments we download 3D object (.obj) files
off the web, mainly from the Google warehouse.
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o Human Interference Count (HIC): HIC cost of a trajectory
is the number of times it interferes with human activities.
Interfering rules were hand designed on expert’s opinion.

e Metropolis Criterion Costmap (MCC): Similar to Main-
price et al. [6], a trajectory’s cost exponentially increases
with its closeness to surrounding objects. The MCC cost of
a trajectory is defined as follows: ¢;, = min,ce dist(t;,0)

—ct

e % ¢, < 1m
U,c(t;) = :
me(ti) 0 otherwise
_ Z?:1 \I/mC(ti)

MCC(T ={t1,..,tu}) = -

dist(t;,0) is the euclidean distance between the waypoint
t; and the object o.

e HIC scaled with MCC: We design this heuristic by com-
bining the HIC and the MCC costs. The HICMCC cost of
a trajectory is HICMCC(T) = MCC(T) « HIC(T)

o Trajectory Preference Perceptron (TPP): Jain et al. [32]
learns a cost function from co-active user feedback in
an online setting. We compare against the TPP using
trajectory features from [32].

The above described baselines assign cost to trajectories
and lower cost is preferred. For quantitative evaluation each
trajectory is also assigned a ground truth score based on
the user feedback from Planlt. The ground truth score of
a trajectory is the minimum score given by a userﬁ] For
example if two segments of a trajectory are labeled with
scores 3 (neutral) and 5 (good), then the ground truth score
is 3. We denote the ground truth score of trajectory 7 as

score(T).

B. Evaluation Metric
Given the ground truth scores we evaluate algorithms
based on the following metrics.

o Misclassification rate: For a trajectory T; we consider the
set of trajectories T'; with higher ground truth score: T; =
{T|score(T) > score(T;)}. The misclassification rate of
an algorithm is the number of trajectories in T; which it
assigns a higher cost than 7;. We normalize this count by
the number of trajectories in T; and average it over all the
trajectories 7; in the data set. Lower misclassification rate
is desirable.

o Normalized discounted cumulative gain (nDCG) [42]:
This metric quantifies how well an algorithm rank trajecto-
ries. It is a relevant metric because autonomous robots can
rank trajectories and execute the top ranked trajectory [43],
[32]. Obtaining a rank list simply amounts to sorting the
trajectories based on their costs.

C. Results
We evaluate the trained model for its:

o Discriminative power: How well can the model distinguish
good/bad trajectories?

o Interpretability: How well does the qualitative visualiza-
tion of the cost function heatmaps match our intuition?

D. Discriminative power of learned cost function

The rationale behind this definition of the ground truth score is that a
trajectory with a single bad waypoint is considered to be overall bad.

TABLE I: Misclassification rate: chances that an algorithm pre-
sented with two trajectories (one good and other bad) orders them
incorrectly. Lower rate is better. The number inside bracket is
standard error.

Algorithms | Bedroom | Living room
Chance 52 (-) A48 (-)
MCP based on Sisbot et al. [4] 46 (.04) 42 (.06)
MCC based on Mainprice et al. [6] 44 (.03) 42 (.06)
HIC | .30 (.04) .23 (.06)
HICMCC | .32 (.04) .29 (.05)
TPP based on Jain et al. [32] .33 (.03) .34 (.05)
Ours within scenario evaluation 32 (.05) .19 (.03)
Ours cross scenario evaluation | .27 (.04) 17 (.05)

Bedroom Living Room

== nDCG@1]
== nDCG@3

0.4 0.4

MCP MCC

HIC HICMCC TPP  Ours  Ours
within  cross

Fig. 12: nDCG plots comparing algorithms on bedroom (left) and
living room (right) environments. Error bar indicates standard error.
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two training settings: (i)  Users provide feedback via Planlt.
within-env: we test and

train on the same category of environment using 5-fold
cross validation, e.g. training on bedrooms and testing on
new bedrooms; and (ii) cross-env: we train on bedrooms
and test on living rooms, and vice-versa. In both settings
the algorithms were tested on environments not seen before.

How well algorithms discriminate between trajectories?
We compare algorithms on the evaluation metrics described
above. As shown in Table [I] our algorithm gives the
lowest misclassification rate in comparison to the baseline
algorithms. We also observe that the misclassification rate on
bedrooms is lower with cross-env training than within-env.
We conjecture this is because of a harder learning problem
(on average) when training on bedrooms than living rooms.
In our data set, on average a bedroom have 3 human
activities while a living room have 2.06. Therefore the
model parameters converge to better optima when trained
on living rooms. As illustrated in Fig. [I2] our algorithm
also ranks trajectories better than other baseline algorithms.

Crowdsourcing helps and so does learning preferences!
We compare our approach to TPP learning algorithm
by Jain et al. [32]. TPP learns with co-active feedback
which requires the user to iteratively improve the trajectory
proposed by the system. This feedback is time consuming to



Fig. 13: Robotic experiment: A screen-shot of our algorithm run-
ning on PR2. Without learning robot blocks view of human watch-
ing football. http://planit.cs.cornell.edu/video

0’ ©

(a) Edge preference for walking alking ¢) Sitting

Fig. 14: Learned affordance heatmaps. (a) Edge preference for
walking activity. Human is at O and object at 1. (b,c) Top view of
heatmaps. Human is at the center and facing right.

elicit and therefore difficult to scale to many environments.
On both evaluation metrics our crowdsourcing approach
outperforms TPP, which is trained on fewer environments.
Fig. [[T] shows our model improves as users provide more
feedback through Planlt. Our data-driven approach is also a
better alternative to hand-designed cost functions.

E. Interpretability: Qualitative visualization of learned cost

Visualizing the learned heatmaps is useful for
understanding the spatial distribution of human-object
activities. We discussed the learned heatmaps for watching,
interacting and working activities in Section [V-A] (see
Fig. [6). Fig. [T4] illustrates the heatmap for the walking, and
sitting activities.

How does crowd preferences change with the nature
of activity? For the same distance between the human
and the object, the spatial preference learned from the
crowd is less-spread for interacting activity than watching
and walking activities, as shown in Fig. [§] This empirical
evidence implies that while interacting humans do not mind
the robot in vicinity unless it blocks their eye contact.

The preferences also vary along the line joining the
human and object. As shown in Fig. 5} while watching TV
the space right in front of the human is critical, and the
edge-preference rapidly decays as we move towards the
TV. On the other hand, when human is walking towards an
object the decay in edge-preference is slower, Fig. [T4{a).

Using the Planlt system and the cost map of individual
activities, a.k.a. affordance library, we generate the planning
map of environments with multiple activities. Some
examples of the planning map are shown in Fig. [I5]

F. Robotic Experiment: Planning via Planlt

In order to plan trajectories in an unseen environment we
generate its planning map and use it as an input cost to

(a) Bedroom

(b) Planning affordance

Fig. 15: Planning affordance map for an environment. Bedroom
with sitting, reaching and watching activities. A robot uses the
affordance map as a cost for planning good trajectories.
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Fig. 16: Learned heatmap for manipulation. (Left) Robot manip-
ulating knife in presence of human and laptop. (Middle) Learned
heatmap showing preferred orientation of knife w.r.t. human — red
being the most unpreferred orientation. (Right) 3D heat cloud of
the same room showing undesirable positions of knife when its
orientation is fixed to always point at the human. Heatmap has
higher density near the face. (Best viewed in color. See interactive
version at the Planlt website.)
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the RRT [17] planner. Given the cost function, RRT plans
trajectories with low cost. We implement our learned model
on PR2 robot for the purpose of navigation when the human
is watching a football match on the TV (Fig. [T3). Without
learning the preferences, the robot plans the shortest path to
the goal and obstructs the human’s view of TV. Demonstra-
tion: http://planit.cs.cornell.edu/video

G. Application to manipulation tasks

We also apply our model to manipulation tasks which
requires modeling higher dimensional state space involv-
ing object and robot-arm configurations. We consider tasks
involving object-object interactions such as, manipulating
sharp objects in human vicinity or moving a glass of water
near electronic devices. For such tasks one has to model both
the object’s distance from its surrounding and its orientation.

Similar to navigation, we show videos on Planlt of robot
manipulating objects such as a knife in the vicinity of
humans and other objects. As feedback users label segments
of videos as good/bad/neutral, we model the feedback as a
generative process shown in Fig. [0] We parametrize the cost
function using Gaussian, von-Mises and Beta distributions.
More details on parameterization and EM updates are in the
supplementary materialﬂ Fig. shows learned preference
for manipulating a knife in human vicinity. We learn that
humans prefer the knife pointing away from them. The
learned heatmap is dense near the face implying humans
strongly prefer the knife far away from their face.

H. Sharing the learned concepts

In order to make the knowledge from Planlt useful to
robots, we have partnered with RoboBrain [44] — an ongoing

Thttp://planit.cs.cornell.edu/supplementary.pdf
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open-source research effort. The RoboBrain represents the
information relevant for robots in form of a knowledge
graph. The concepts learned by Planlt are connected to its
knowledge graph. The planning affordances learned by Planlt
are represented as nodes in the graph and they are connected
(with edges) to their associated human activity node. This
way Planlt enables RoboBrain to connect different types
of affordances associated with an activity. For example, the
planning affordance when moving a knife and its grasping
affordance [24] are related through cutting activity.

VII. CONCLUSION

In this paper we proposed a crowdsourcing approach
for learning user preferences over trajectories. Our Planlt
system is user-friendly and easy-to-use for eliciting large
scale preference data from non-expert users. The simplicity
of Planlt comes at the expense of weak and noisy labels
with latent annotator intentions. We presented a generative
approach with latent nodes to model the preference data.
Through Planlt we learn spatial distribution of activities
involving humans and objects. We experimented on many
context-rich living and bedroom environments. Our results
validate the advantages of crowdsourcing and learning the
cost over hand encoded heuristics. We also implemented our
learned model on the PR2 robot. Planlt is publicly available
for visualizing learned cost function heatmaps, viewing
robotic demonstration, and providing preference feedback
http://planit.cs.cornell.edul
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