
LEARNING FROM NATURAL HUMAN

INTERACTIONS FOR ASSISTIVE ROBOTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ashesh Jain

May 2016

c© 2016 Cornell University

ALL RIGHTS RESERVED

LEARNING FROM NATURAL HUMAN INTERACTIONS FOR ASSISTIVE

ROBOTS

Ashesh Jain, Ph.D.

Cornell University 2016

Leveraging human knowledge to train robots is a core problem in robotics.

In the near future we will see humans interacting with agents such as, assis-

tive robots, cars, smart houses, etc. Agents that can elicit and learn from such

interactions will find use in many applications. Previous works have proposed

methods for learning low-level robotic controls or motion primitives from (near)

optimal human signals. In many applications such signals are not naturally

available. Furthermore, optimal human signals are also difficult to elicit from

non-expert users at a large scale.

Understanding and learning user preferences from weak signals is there-

fore of great emphasis. To this end, in this dissertation we propose interactive

learning systems which allow robots to learn by interacting with humans. We

develop interaction methods that are natural to the end-user, and algorithms

to learn from sub-optimal interactions. Furthermore, the interactions between

humans and robots have complex spatio-temporal structure. Inspired by the

recent success of powerful function approximators based on deep neural net-

works, we propose a generic framework for modeling interactions with struc-

ture of Recurrent Neural Networks. We demonstrate applications of our work

on real-world scenarios on assistive robots and cars. This work also established

state-of-the-art on several existing benchmarks.

BIOGRAPHICAL SKETCH

Ashesh Jain was born and brought up in Allahabad, India. Before joining the

graduate program at Cornell University, he obtained a Bachelors degree in elec-

trical engineering from the Indian Institute of Technology (IIT) Delhi. He has

explored a variety of research areas: embedded systems, semiconductor device

physics, machine learning, computer vision, and robotics – and he enjoyed all

of them. In his free time, he likes to sing, cook, and swim.

iii

This dissertation is dedicated to my parents – Renu Jain and Alok Jain.

iv

ACKNOWLEDGEMENTS

I am very thankful to my adviser Ashutosh Saxena for his guidance. He always

ensured that I address important research problems, and motivated me to think

about the bigger picture. The rich experience of working with him will con-

tinue to guide me. I was also fortunate to collaborate with Thorsten Joachims. It

helped me sketch the broader picture of this dissertation. He was very encour-

aging, and his research and teaching were truly inspirational. Professor Bart

Selman was very supportive and encouraging throughout the PhD. He was al-

ways available for discussions, and ensured that I focused on research while he

took care of the rest. I am thankful to Doug James and Bobby Kleinberg for shar-

ing their deep insights whenever I presented my work. I also learned through

various interactions with Clarie Cardie, Lillian Lee, and Percy Liang. I thank

them for sharing their wisdom. A big thanks to the administrators, particularly

Becky Stewart and Megan Gatch, who took care of almost everything.

I was fortunate to spend a significant part (two years) of my PhD at the Stan-

ford AI Lab (SAIL). I am particularly thankful to Silvio Savarese and the CVGL

group for hosting me. The research discussions with the students at SAIL were

very enriching. I also thank Alex Sandra for helping with all the administrative

work. The IT support at Stanford (Actions) was amazing and very efficient. I

thank them for resolving my countless tickets. The time spent at Stanford was a

thrilling experience. There I learned how research can translate into product!

I thank my lab members Yun Jiang, Hema Koppula, Ian Lenz, Jaeyong Sung,

Dipendra Misra, Ozan Sener, and Chenxia Wu for the fun times and for helping

me in various ways. I am also thankful to my wonderful collaborators: Hema

Koppula, Amir Zamir, Ozan Sener, Dipendra Misra, Aditya Jami, Jayesh Gupta,

Shane Soh, Bharad Raghavan, Avi Singh, Siddhant Manocha, Arpit Agarwal,

v

Debarghya Das, and Shikhar Sharma. I also learned through various research

discussions with Adith Swaminathan, Moontae Lee, Karthik Raman, Anshu-

mali Shrivastava, Ayush Dubey, Chen Wang, and Ozan Irsoy. My friends at

Ithaca: Abhishek, Apoorv, Pankaj, Arzoo, Ayush, Aniket, Gauri, Chaitali, Chai-

tanya, and Avik, made this journey a lot more joyful.

Lastly, I am very thankful to my wonderful family – parents, wife, sisters,

uncle, and aunt – for their love and support. My parents, Renu Jain and Alok

Jain, supported me in every possible manner. Their love and affection kept

me strong and going. I met my wife, Hema Koppula, during this period. We

walked together the journey from friends to collaborators, and then becoming

the partners-for-life. She was very supportive, and her advice always worked

wonders for me.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Robots and humans: Interactive learning 2
1.2 Spatio-temporal deep structures 4
1.3 Sharing representations . 5
1.4 Applications . 7
1.5 First published appearances of the described contributions 8

2 Learning Manipulation Trajectories from Iterative Improvements 9
2.1 Beyond geometric path planning 10
2.2 Previous works on learning to plan 13
2.3 Coactive learning with incremental feedback 17

2.3.1 Robot learning setup . 17
2.3.2 Feedback mechanisms . 17

2.4 Learning and feedback model . 20
2.5 Our approach . 22

2.5.1 Features describing object-object interactions 23
2.5.2 Trajectory features . 25
2.5.3 Computing trajectory rankings 28
2.5.4 Learning the scoring function 29

2.6 Application on robots . 30
2.6.1 Experimental setup . 31
2.6.2 Results and discussion . 36
2.6.3 Comparison with fully-supervised algorithms 39
2.6.4 Robotic experiment: User study in learning trajectories . . 41

2.7 Conclusion . 45

3 Crowdsourcing Feedback for Path Planning 47
3.1 Planning affordances . 48
3.2 Previous works on affordances and learning preferences 50
3.3 Context-aware planning problem 52
3.4 PlanIt: A crowdsourcing engine . 54
3.5 Learning algorithm . 57

3.5.1 Cost parameterization through affordance 57
3.5.2 Generative model . 61

3.6 Experiments on PlanIt . 64

vii

3.6.1 Baseline algorithms . 64
3.6.2 Evaluation metric . 66
3.6.3 Results . 67
3.6.4 Discriminative power of learned cost function 67
3.6.5 Interpretability: Qualitative visualization of learned cost . 69
3.6.6 Robotic experiment . 71

3.7 Conclusion . 72

4 Anticipating Maneuvers From Implicit Driving Signals 74
4.1 Motivation for maneuver anticipation 74
4.2 Robotic anticipation . 75
4.3 Assistive cars and related works 79
4.4 Maneuver anticipation . 83

4.4.1 Problem overview . 83
4.4.2 System overview . 85

4.5 Preliminaries . 87
4.5.1 Recurrent Neural Networks 88
4.5.2 Long Short-Term Memory Cells 88

4.6 Network architecture for anticipation 90
4.6.1 RNN with LSTM units for anticipation 91
4.6.2 Fusion-RNN: Sensory fusion RNN for anticipation 92
4.6.3 Exponential loss-layer for anticipation. 93

4.7 Features for anticipation . 94
4.7.1 Inside-vehicle features. 94
4.7.2 Outside-vehicle features. 98

4.8 Bayesian networks for maneuver anticipation 98
4.8.1 Modeling driving maneuvers 99

4.9 Evaluation on real world driving data 100
4.9.1 Driving data set . 101
4.9.2 Baseline algorithms . 102
4.9.3 Evaluation protocol . 103
4.9.4 Quantitative results . 105

4.10 Conclusion . 111

5 Deep Learning on Spatio-Temporal Graphs 113
5.1 Recurrent neural networks and spatio-temporal graphs 114
5.2 Related deep architectures . 117
5.3 Structural-RNN architectures . 120

5.3.1 Representation of spatio-temporal graphs 120
5.3.2 Structural-RNN from spatio-temporal graphs 123
5.3.3 Training structural-RNN architecture 125

5.4 Applications of Structural-RNN . 127
5.4.1 Human motion modeling and forecasting 128
5.4.2 Going deeper into structural-RNN 134

viii

5.4.3 Human activity detection and anticipation 137
5.4.4 Driver maneuver anticipation 140

5.5 Conclusion . 141

6 Knowledge-Engine for Robots 143
6.1 Why do robots need a knowledge engine? 144
6.2 Related work . 147
6.3 Overview . 150
6.4 Knowledge engine formal definition 152
6.5 System architecture . 155
6.6 Robot Query Library (RQL) . 157
6.7 Applications to path planning . 159

6.7.1 Use of knowledge engine as-a-service 160
6.7.2 Improving path planning by knowledge sharing 161

6.8 Discussion and conclusion . 163

7 Conclusion and Future Work 165

A Chapter 2 Appendix 168
A.1 Proof for Average Regret . 168
A.2 Proof for Expected Regret . 171

B Chapter 4 Appendix 173
B.1 Modeling Maneuvers with AIO-HMM 173

B.1.1 Learning AIO-HMM parameters 174
B.1.2 Inference of Maneuvers . 176

Bibliography 178

ix

LIST OF TABLES

2.1 Comparison of different algorithms in untrained setting. Table
contains nDCG@1(nDCG@3) values averaged over 20 feedbacks. 39

2.2 Shows learning statistics for each user. Self and cross scores of
the final learned trajectories. The number inside bracket is stan-
dard deviation. (Top) Results for grocery store on Baxter. (Bot-
tom) Household setting on PR2. 44

3.1 Misclassification rate: chances that an algorithm presented with
two trajectories (one good and other bad) orders them incor-
rectly. Lower rate is better. The number inside bracket is stan-
dard error. 68

4.1 Maneuver Anticipation Results. Average precision, recall and
time-to-maneuver are computed from 5-fold cross-validation.
Standard error is also shown. Algorithms are compared on the
features from Jain et al. [91]. 106

4.2 False positive prediction (f pp) of different algorithms. The
number inside parenthesis is the standard error. 108

4.3 3D head-pose features. In this table we study the effect of better
features with best performing algorithm from Table 4.1 in ‘All
maneuvers’ setting. We use [9] to track 68 facial landmark points
and estimate 3D head-pose. 109

5.1 Motion forecasting angle error. {80, 160, 320, 560, 1000} msecs
after the seed motion. The results are averaged over 8 seed mo-
tion sequences for each activity on the test subject. 132

5.2 Results on CAD-120 [119]. S-RNN architecture derived from
the st-graph in Figure 5.5b outperforms Koppula et al. [121, 119]
which models the same st-graph in a probabilistic framework. S-
RNN in multi-task setting (joint detection and anticipation) fur-
ther improves the performance. 139

6.1 Some examples of different node types in our RoboBrain graph.
For full-list, please see the code documentation. 153

6.2 Some examples of different edge types in our RoboBrain graph.
For full-list, please see the code documentation. 153

x

LIST OF FIGURES

1.1 Robot and human interactions . 2
1.2 Diverse spatio-temporal tasks and their corresponding spatio-

temporal graphs. The graph unrolls through time as the interac-
tion progresses. 4

1.3 An example use case of robot knowledge-engine for perform-
ing tasks. 6

1.4 Applications we address by modeling different interactions. . . 7

2.1 Re-rank feedback mechanism: (Left) Robot ranks trajectories
using the score function and (Middle) displays top three trajec-
tories on a touch screen device (iPad here). (Right) As feedback,
the user improves the ranking by selecting the third trajectory. . 16

2.2 Re-ranking feedback: Shows three trajectories for moving egg
carton from left to right. Using the current estimate of score func-
tion robot ranks them as red, green and blue. As feedback user
clicks the green trajectory. Preference: Eggs are fragile. They
should be kept upright and near the supporting surface. 18

2.3 Zero-G feedback: Learning trajectory preferences from subop-
timal zero-G feedback. (Left) Robot plans a bad trajectory (way-
points 1-2-4) with knife close to flower. As feedback, user cor-
rects waypoint 2 and moves it to waypoint 3. (Right) User pro-
viding zero-G feedback on waypoint 2. 19

2.4 Interactive feedback. Task here is to move a bowl filled with
water. The robot presents a bad trajectory with waypoints 1-2-4
to the user. As feedback user moves waypoint 2 (red) to way-
point 3 (green) using Rviz interactive markers. The interactive
markers guides the user to correct the waypoint. 20

2.5 (Left) An environment with a few objects where the robot was
asked to move the cup on the left to the right. (Middle) There
are two ways of moving it, ‘a’ and ‘b’, both are suboptimal in that
the arm is contorted in ‘a’ but it tilts the cup in ‘b’. Given such
constrained scenarios, we need to reason about such subtle pref-
erences. (Right) We encode preferences concerned with object-
object interactions in a score function expressed over a graph.
Here y1, . . . , yn are different waypoints in a trajectory. The shaded
nodes corresponds to environment (table node not shown here).
Edges denotes interaction between nodes. 23

2.6 (Top) A good and bad trajectory for moving a mug. The bad tra-
jectory undergoes ups-and-downs. (Bottom) Spectrograms for
movement in z-direction: (Left) Good trajectory, (Right) Bad tra-
jectory. 26

xi

2.7 Robot demonstrating different grocery store and household ac-
tivities with various objects (Left) Manipulation centric: while
pouring water the tilt angle of bottle must change in a partic-
ular manner, similarly a flower vase should be kept upright.
(Middle) Environment centric: laptop is an electronic device so
robot must carefully move water near it, similarly eggs are frag-
ile and should not be lifted too high. (Right) Human centric: knife
is sharp and interacts with nearby soft items and humans. It
should strictly be kept at a safe distance from humans. (Best
viewed in color) . 32

2.8 Results on Baxter in grocery store setting. 36
2.9 Results on PR2 in household setting. 36
2.10 Study of generalization with change in object, environment and

both. Manual, Pre-trained MMP-online (—), Untrained MMP-
online (– –), Pre-trained TPP (—), Untrained TPP (– –). 36

2.11 Study of re-rank feedback on Baxter for grocery store setting. . . 38
2.12 Comparision with fully-supervised Oracle-svm on Baxter for

grocery store setting. 40
2.13 Grocery store setting on Baxter. 41
2.14 Household setting on PR2. 41
2.15 (Left) Average quality of the learned trajectory after every one-

third of total feedback. (Right) Bar chart showing the average
number of feedback (re-ranking and zero-G) and time required
(only for grocery store setting) for each task. Task difficulty in-
creases from 1 to 10. 41

2.16 Shows trajectories for moving a bowl of water in presence of hu-
man. Without learning robot plans an undesirable trajectory and
moves bowl over the human (waypoints 1-3-4). After six user
feedback robot learns the desirable trajectory (waypoints 1-2-4). . 42

2.17 Shows the learned trajectory for moving an egg carton. Since
eggs are fragile robot moves the carton near the table surface.
(Left) Start of trajectory. (Middle) Intermediate waypoint with
egg close to the table surface. (Right) End of trajectory. 43

3.1 Various human activities with the objects in the environment
affect how a robot should navigate in the environment. The fig-
ure shows an environment with multiple human activities: (1)
two humans interacting, (2) watching, (3) walking, (4) working, (5)
sitting, and (6) reaching for a lamp. We learn a spatial distribution
for each activity, and use it to build a cost map (aka planning
affordance map) for the complete environment. Using the cost
map, the robot plans a preferred trajectory in the environment. . 49

xii

3.2 Preference-based Cost calculation of a trajectory. The trajectory
TA is preferred over TB because it does not interfere with the
human activities. The cost of a trajectory decomposes over the
waypoints ti, and the cost depends on the location of the objects
and humans associated with an activity. 53

3.3 PlanIt Interface. Screenshot of the PlanIt video labeling inter-
face. The video shows a human walking towards the door while
other human is browsing books, with text describing the envi-
ronment on left. As feedback the user labels the time interval
where the robot crosses the human browsing books as red, and
the interval where the robot carefully avoids the walking human
as green. (Best viewed in color) . 55

3.4 An illustration of our PlanIt system. Our learning system has
three main components (i) cost parameterization through affor-
dance; (ii) The PlanIt engine for receiving user preference feed-
back; and (iii) Learning algorithm. (Best viewed in color) 56

3.5 An example the learned planning affordance. In the top-view,
the human is at the center and facing the object on the right (1m
away). Dimension is 2m×2m. (Best viewed in color) 58

3.6 Human side of local co-ordinate system for watching activity.
Similar co-ordinates are defined for the object human interacts
with. Unit vector xti is the projection of waypoint ti on x-y axis
and normalized it by its length. Distance between human and
object is dh−o, and ti projected on x-axis is of length dti 60

3.7 Result of learned edge preference. Distance between human
and object is normalized to 1. Human is at 0 and object at 1.
For interacting activity, edge preference is symmetric between
two humans, but for watching activity humans do not prefer the
robot passing very close to them. 61

3.8 Watching activity example. Three humans watching a TV. 62
3.9 Feedback model. Generative model of the user preference data. 62
3.10 Examples from our dataset: four living room and two bed-

room environments. On left is the 2D image we download from
Google images. On right are the 3D reconstructed environments
in OpenRAVE. All environments are rich in the types and num-
ber of objects and often have multiple humans perform different
activities. 65

3.11 nDCG plots comparing algorithms on bedroom (left) and living
room (right) environments. Error bar indicates standard error. . . 69

3.12 Crowdsourcing improves performance: Misclassification rate
decreases as more users provide feedback via PlanIt. 70

3.13 Learned affordance heatmaps. (a) Edge preference for walk-
ing activity. Human is at 0 and object at 1. (b,c) Top view of
heatmaps. Human is at the center and facing right. 70

xiii

3.14 Planning affordance map for an environment. Bedroom with
sitting, reaching and watching activities. A robot uses the affor-
dance map as a cost for planning good trajectories. 71

3.15 Robotic experiment: A screen-shot of our algorithm running
on PR2. Without learning robot blocks the view of the hu-
man watching football. http://planit.cs.cornell.edu/
video . 72

4.1 Anticipating maneuvers. Our algorithm anticipates driving ma-
neuvers performed a few seconds in the future. It uses informa-
tion from multiple sources including videos, vehicle dynamics,
GPS, and street maps to anticipate the probability of different
future maneuvers. 76

4.2 (Left) Shows training RNN for anticipation in a sequence-to-
sequence prediction manner. The network explicitly learns to
map the partial context (x1, .., xt) ∀t to the future event y. (Right)
At test time the network’s goal is to anticipate the future event as
soon as possible, i.e. by observing only a partial temporal context. 78

4.3 Variations in the data set. Images from the data set [91] for a left
lane change. (Left) Views from the road facing camera. (Right)
Driving style of the drivers vary for the same maneuver. 79

4.4 Variable time occurrence of events. Left: The events inside the
vehicle before the maneuvers. We track the driver’s face along
with many facial points. Right: The trajectories generated by the
horizontal motion of facial points (pixels) ‘t’ seconds before the
maneuver. X-axis is the time and Y-axis is the pixels’ horizontal
coordinates. Informative cues appear during the shaded time
interval. Such cues occur at variable times before the maneuver,
and the order in which the cues appear is also important. 84

4.5 System Overview. Our system anticipating a left lane change
maneuver. (a) We process multi-modal data including GPS,
speed, street maps, and events inside and outside of the vehi-
cle using video cameras. (b) Vision pipeline extracts visual cues
such as driver’s head movements. (c) The inside and outside
driving context is processed to extract expressive features. (d,e)
Using our deep learning architecture we fuse the information
from outside and inside the vehicle and anticipate the probabil-
ity of each maneuver. 86

4.6 Internal working of an LSTM unit. 89
4.7 Sensory fusion RNN for anticipation. (Bottom) In the Fusion-

RNN each sensory stream is passed through their independent
RNN. (Middle) High-level representations from RNNs are then
combined through a fusion layer. (Top) In order to prevent over-
fitting early in time the loss exponentially increases with time. . . 92

xiv

http://planit.cs.cornell.edu/video
http://planit.cs.cornell.edu/video

4.8 Inside vehicle feature extraction. The angular histogram fea-
tures extracted at three different time steps for a left turn maneu-
ver. Bottom: Trajectories for the horizontal motion of tracked fa-
cial pixels ‘t’ seconds before the maneuver. At t=5 seconds before
the maneuver the driver is looking straight, at t=3 looks (left) in
the direction of maneuver, and at t=2 looks (right) in opposite
direction for the crossing traffic. Middle: Average motion vec-
tor of tracked facial pixels in polar coordinates. r is the average
movement of pixels and arrow indicates the direction in which
the face moves when looking from the camera. Top: Normalized
angular histogram features. 96

4.9 Improved features for maneuver anticipation. We track fa-
cial landmark points using the CLNF tracker [9] which re-
sults in more consistent 2D trajectories as compared to the KLT
tracker [196] used by Jain et al. [91]. Furthermore, the CLNF also
gives an estimate of the driver’s 3D head pose. 97

4.10 AIO-HMM. The model has three layers: (i) Input (top): this layer
represents outside vehicle features x; (ii) Hidden (middle): this
layer represents driver’s latent states h; and (iii) Output (bot-
tom): this layer represents inside vehicle features z. This layer
also captures temporal dependencies of inside vehicle features.
T represents time. 99

4.11 Our data set is diverse in drivers and landscape. 101
4.12 Confusion matrix of different algorithms when jointly predict-

ing all the maneuvers. Predictions made by algorithms are
represented by rows and actual maneuvers are represented by
columns. Numbers on the diagonal represent precision. 110

4.13 Effect of prediction threshold pth. At test time an algorithm
makes a prediction only when it is at least pth confident in its
prediction. This plot shows how F1-score vary with change in
prediction threshold. 111

5.1 From st-graph to S-RNN for an example problem. (Bottom)
Shows an example activity (human microwaving food). Model-
ing such problems requires both spatial and temporal reasoning.
(Middle) St-graph capturing spatial and temporal interactions
between the human and the objects. (Top) Schematic represen-
tation of our structural-RNN architecture automatically derived
from st-graph. It captures the structure and interactions of st-
graph in a rich yet scalable manner. 114

xv

5.2 An example spatio-temporal graph (st-graph) of a human ac-
tivity. (a) st-graph capturing human-object interaction. (b) Un-
rolling the st-graph through edges ET . The nodes and edges are
labelled with the feature vectors associated with them. (c) Our
factor graph parameterization of the st-graph. Each node and
edge in the st-graph has a corresponding factor. 120

5.3 An example of st-graph to S-RNN. (a) The st-graph from Fig-
ure 5.2 is redrawn with colors to indicate sharing of nodes and
edge factors. Nodes and edges with same color share factors.
Overall there are six distinct factors: 2 node factors and 4 edge
factors. (b) S-RNN architecture has one RNN for each factor.
EdgeRNNs and nodeRNNs are connected to form a bipartite
graph. Parameter sharing between the human and object nodes
happen through edgeRNN RE1

. (c) The forward-pass for human
node v involve RNNs RE1

, RE3
and RV1

. In Figure 5.4 we show
the detailed layout of this forward-pass. Input features into RE1

is sum of human-object edge features xu,v + xv,w. (d) The forward-
pass for object node w involve RNNs RE1

, RE2
, RE4

and RV2
. In

this forward-pass, the edgeRNN RE1
only processes the edge fea-

ture xv,w. (Best viewed in color) . 123
5.4 Forward-pass for human node v. Shows the architecture layout

corresponding to the Figure 5.3c on unrolled st-graph. (View in
color) . 125

5.5 Diverse spatio-temporal tasks. We apply S-RNN to the follow-
ing three diverse spatio-temporal problems. (View in color) . . . 127

5.6 Forecasting eating activity on test subject. On aperiodic activ-
ities, ERD and LSTM-3LR struggle to model human motion. S-
RNN, on the other hand, mimics the ground truth in the short-
term and generates human like motion in the long term. Without
(w/o) edgeRNNs the motion freezes to some mean standing po-
sition. See Video: http://asheshjain.org/srnn 131

5.7 User study with five users. Each user was shown 36 forecasted
motions equally divided across four activities (walking, eating,
smoking, discussion) and three algorithms (S-RNN, ERD, LSTM-
3LR). The plot shows the number of bad, neutral, and good mo-
tions forecasted by each algorithm. 134

5.8 S-RNN memory cell visualization. (Left) A cell of the leg
nodeRNN fires (red) when “putting the leg forward”. (Right)
A cell of the arm nodeRNN fires for “moving the hand close to
the face”. We visualize the same cell for eating and smoking ac-
tivities. (See video) . 135

5.9 Generating hybrid motions. We demonstrate flexibility of S-
RNN by generating a hybrid motion of a “human jumping for-
ward on one leg”. See video: http://asheshjain.org/srnn 136

xvi

http://asheshjain.org/srnn
http://asheshjain.org/srnn

5.10 Train and test error. S-RNN generalizes better than ERD with a
smaller test error. 137

5.11 Qualitative result on eating activity on CAD-120. Shows multi-
task S-RNN detection and anticipation results. For the sub-
activity at time t, the labels are anticipated at time t − 1. 140

6.1 An example showing a robot using RoboBrain for performing
tasks. The robot is asked “Bring me sweet tea from the kitchen”,
where it needs to translate the instruction into the perceived state
of the environment. RoboBrain provides useful knowledge to
the robot for performing the task: (a) sweet tea can be kept on a
table or inside a refrigerator, (b) bottle can be grasped in certain
ways, (c) opened sweet tea bottle needs to be kept upright, (d)
the pouring trajectory should obey user preferences of moving
slowly to pour, and so on. 145

6.2 A visualization of the RoboBrain graph on Nov 2014, show-
ing about 45K nodes and 100K directed edges. The left in-
set shows a zoomed-in view of a small region of the graph
with rendered media. This illustrates the relations between
multiple modalities namely images, heatmaps, words and
human poses. For high-definition graph visualization, see:
http://pr.cs.cornell.edu/robobrain/graph.pdf . . . 146

6.3 Visualization of inserting new information. We insert ‘Sitting
human can use a mug’ and RoboBrain infers the necessary split
and merge operations on the graph. In (a) we show the original
sub-graph, In (b) information about a Mug is seen for the first
time and the corresponding node and edge are inserted, In (c)
inference algorithm infers that previously connected cup node
and cup images are not valid any more, and it splits the Cup

node into two nodes as Cup and Mug′ and then merges Mug′ and
Mug nodes. 154

6.4 RoboBrain system architecture. It consists of four intercon-
nected knowledge layers and supports various mechanisms for
users and robots to interact with RoboBrain. 155

6.5 RoboBrain for planning trajectory. The robot queries Robo-
Brain for the trajectory parameters (learned by Jain et al. [96])
to plan paths for the fragile objects like an egg carton. 160

xvii

http://pr.cs.cornell.edu/robobrain/graph.pdf

6.6 Sharing from Internet sources. The plot shows performance of
the algorithm by Jain et al. [96] for three settings of attributes.
This is an online algorithm that learns a good trajectory from the
user feedback. The performance is measured using the nDCG
metric [152], which represents the quality of the ranked list
of trajectories. RoboBrain combines information from multiple
sources and hence its richer in attributes as compared to retriev-
ing attributes from OpenCyc alone. 162

6.7 Degree distribution of RoboBrain and the union of independent
knowledge sources. For the case of independent sources, we
only consider the edges between nodes from the same source.
RoboBrain connects different projects successfully: number of
nodes with degree 1 and 2 decrease and nodes with degree 3
and more increase. 164

xviii

CHAPTER 1

INTRODUCTION

In our everyday lives, we interact with agents like personal computers,

search engines, cars, etc., and reveal many of our personal choices, biases,

and preferences. Improving agents by analyzing their interactions with hu-

mans is an active area of research. However, the algorithmic and systems chal-

lenges involved in interactive learning varies with the application. For exam-

ple, there has been significant advances in learning from humans for informa-

tion retrieval tasks such as recommendation systems [82, 126], ranking docu-

ments [102, 105, 199], etc. This is primarily due to the availability of scalable

and easy-to-use interaction mechanisms (like search engines) that reap massive

logs of interaction data.

As things stand in robotics, interactive learning is in its early stages due

to the involved systems challenges, data scarcity, scaling difficulties, and the

multi-modal nature of robotics problems. Nonetheless, learning from humans

is a necessary step to unlock natural human-robot interactions with applications

ranging from household robots to autonomous cars. Interactive human-robot

learning presents new opportunities for developing novel interaction mecha-

nisms, algorithms for sensory-fusion, and learning preferences grounded in the

physical-world.

In this dissertation we study algorithms and applications of interactive

learning between humans and robots. Figure 1.1 demonstrates two examples

of interactions: one between a human and a household robot (Baxter) and an-

other between a human driver and the car. In order for the agents (robot or car)

to learn from such interactions, we address questions like:

1

0.1

0.2

0.7

Face

Camera

Road Camera

Figure 1.1: Robot and human interactions

• How do we design interaction mechanisms that are easy to use by non-expert

users?

• How do we build learning algorithms that can learn from weak human signals?

• How do we model the rich spatio-temporal interactions using deep neural net-

works?

1.1 Robots and humans: Interactive learning

In order for robots to operate autonomously, they need to learn many concepts

about our physical world. The skills they should acquire ranges from percep-

tion to performing actions in the human environment. While several skills can

be learned from large annotated databases (e.g. object detection using Ima-

genet [46]), many others require the robot to observe and interact with humans.

In this dissertation we focus on skills that robots learn by interacting with hu-

mans. This includes learning context dependent actions, understanding and

anticipating human behaviour, and generating desirable motions to fulfill tasks.

2

The interaction mechanism between the human and the robot is also an im-

portant aspect to consider. First, the interaction being analyzed should vary

based on the application and the nature of skill that the robot wants to learn.

Second, it should also take into account the sub-optimality of human signals.

In this dissertation we address several human-robot interactive learning prob-

lems and propose mechanisms for eliciting human signals. We focus on learning

from non-expert users and build interaction mechanisms that are easy-to-use –

often as easy as a clicking a mouse – to widely elicit user interaction. Figure 1.1

shows some examples of robots interacting with humans.

When interacting with robotic manipulators with high degrees-of-freedom,

it becomes challenging for non-expert users to provide optimal kinesthetic

demonstrations. In chapter 2 & 3, we consider such robotic manipulation and

navigation tasks and learn user preferences over robot trajectories. We propose

multiple easy-to-elicit feedback mechanisms and develop algorithms to learn

from sub-optimal user feedback. We also develop a crowdsourcing platform to

elicit such signals at a large scale.

We explore similar kinds of interactive learning for other agents. In chap-

ter 4 we model the commonly occurring interaction between a driver, the car,

and their surroundings. We propose a vehicular sensor-rich platform and learn-

ing algorithms to anticipate the future maneuvers of the driver several seconds

in advance. In our interaction system, we equip a car with cameras, Global

Positioning System (GPS), and a computing device. We observe many drivers

driving to their destination, and the drivers provide many implicit examples of

maneuvers as learning signals (lane changes, turns etc.).

In this dissertation we provide insights into developing such interactive

3

Human

Object

Object

Object

Spine

Right armLeft arm

Right legLeft leg

Driver

Outside
context

Inside
context

(a) Human motion modeling (b) Activity detection and anticipation (c) Maneuver anticipation

Figure 1.2: Diverse spatio-temporal tasks and their corresponding
spatio-temporal graphs. The graph unrolls through time as
the interaction progresses.

learning systems in order for robots to learn from humans. We particularly

focus on interaction methods that are not just restricted to expert users but also

generalize to non-experts.

1.2 Spatio-temporal deep structures

Many problems in robotics and computer vision involve complex interactions

between components that span over space and time, such as interactions be-

tween a human, robot, and their surrounding environment. Figure 1.2 shows

some examples of these spatio-temporal interactions. Modeling such spatio-

temporal interactions and defining cost functions over them is central to learn-

ing from interactions. Spatio-temporal graphs are expressive tools for repre-

senting such high-level interactions. However, learning expressive cost func-

4

tions over them that capture long temporal dependencies is still a challenging

problem.

Deep Recurrent Neural Networks (RNNs) have recently shown a lot of

promise in the rich modeling of long-temporal sequences. Variants of RNN

(e.g. RNNs with Long Short-Term Memory) further add external memory to

the architecture. Despite their expressiveness, RNNs lack an intuitive high-level

spatio-temporal structure. In chapter 5, we propose an approach for combining

the power of high-level spatio-temporal graphs and sequence learning success

of Recurrent Neural Networks (RNNs). We develop a scalable method for cast-

ing an arbitrary spatio-temporal graph as a rich RNN mixture that is feedfor-

ward, fully differentiable, and jointly trainable. The proposed method is generic

and principled as it can be used for transforming any spatio-temporal graph by

employing a certain set of well defined steps. We show applications of our ap-

proach by modeling several spatio-temporal interactions.

1.3 Sharing representations

The presence of organized knowledge bases has provided tremendous value to

humans. Examples include the Google knowledge graph [50], IBM Watson [63],

Wikipedia, and many others. By making the worlds knowledge available to

everyone and everywhere, they have helped in the holistic growth of many ar-

eas of science and research. Unfortunately, the existing knowledge bases are

of little use for robots who require much more fine-grained knowledge such as

grasping, affordances, preferences, etc.

We address this problem more generally and introduce a knowledge engine

5

sweet
_tea

lo
ok
s_
lik
e

grasp_feature

table

kept

pouring

has
_tra
jec
tory

looks_like

sub
jec
t_o
f

obje
ct_o

f

object_of

first_order_
collection

type_of

refrigerator looks_li
ke

object_of

Perception
Module Environment

Perception
Query

Planning
Module

Planning
Query

Representation

Representation

Figure 1.3: An example use case of robot knowledge-engine for perform-
ing tasks.

for robots in chapter 6. The knowledge engine allows robots to learn and share

knowledge representations and enables them to carry out a variety of tasks (Fig-

ure 1.3). The knowledge stored in the engine comes from multiple sources in-

cluding physical interactions that robots have while performing tasks (percep-

tion, planning and control), knowledge bases from the Internet, and learned

representations from several robotics research groups. We propose a system

architecture for storing the multi-modal knowledge base and demonstrate that

knowledge sharing allows robots to generate better trajectories. This knowl-

edge engine is developed in collaboration with several co-authors as a part of a

bigger project1.

1Saxena, Jain, Sener, Jami, Misra, Koppula http://robobrain.me

6

http://robobrain.me

(a) Path planning (b) Driving maneuver anticipation

(c) Human motion modeling

Figure 1.4: Applications we address by modeling different interactions.

1.4 Applications

We demonstrate the applications of our interactive learning algorithms on sev-

eral real world robotic problems. Figure 1.4 shows some of the applications.

We address robotic navigation and manipulation tasks and learn user pref-

erences over robot trajectories in contextually rich environments from sub-

optimal feedback (Figure 1.4(a)). We implement our algorithm on two high

degrees-of-freedom robots, PR2 and Baxter, and apply it to perform household

chores and grocery checkout tasks.

In order to anticipate driving maneuvers, we gather 1100 miles of driving

data using our vehicular setup (Figure 1.4(b)). We represent the drivers inter-

action with the car and the surrounding environment over a spatio-temporal

7

graph and model the resulting graph with a deep RNN architecture. Our ap-

proach can anticipate maneuvers 3.5 seconds before they occur with high pre-

cision and recall. We also demonstrate the benefits of transforming spatio-

temporal graphs to RNN architectures for applications like human motion mod-

eling (Figure 1.4(c)) and human activity detection and anticipation.

1.5 First published appearances of the described contributions

Most of the contributions described in this dissertation have first appeared as

the following publications.

• Chapter 2: Jain, Wojcik, Joachims, and Saxena [96]; Jain, Sharma, and Sax-

ena [94]; Jain, Sharma, Joachims, and Saxena [93]

• Chapter 3: Jain, Das, Gupta, and Saxena [90]; Koppula, Jain, and Sax-

ena [120]

• Chapter 4: Jain, Koppula, Raghavan, Soh, and Saxena [91]; Jain, Singh,

Soh, Koppula, and Saxena [95]; Jain, Koppula, Soh, Raghavan, Singh, and

Saxena [92]

• Chapter 5: Jain, Zamir, Savarese, and Saxena [97]

• Chapter 6: Saxena, Jain, Sener, Jami, Misra, and Koppula [194]

8

CHAPTER 2

LEARNING MANIPULATION TRAJECTORIES FROM ITERATIVE

IMPROVEMENTS

Mobile manipulators with high degrees-of-freedom (DoF) can problem a

task in many ways, however not all ways are desirable. In this chapter we

consider the problem of learning preferences over trajectories for mobile ma-

nipulators such as personal robots and assembly line robots. The contributions

of this chapter is a novel human-robot interaction framework for learning from

non-expert users, and its applications to household and industrial robots.

The preferences we learn are more intricate than simple geometric con-

straints on trajectories; they are rather governed by the surrounding context

of various objects and human interactions in the environment. We propose a

coactive online learning framework for teaching preferences in contextually rich

environments. The key novelty of our approach lies in the type of feedback ex-

pected from the user: the human user does not need to demonstrate optimal

trajectories as training data, but merely needs to iteratively provide trajectories

that slightly improve over the trajectory currently proposed by the system. We

argue that this coactive preference feedback can be more easily elicited than

demonstrations of optimal trajectories. Nevertheless, theoretical regret bounds

of our algorithm match the asymptotic rates of optimal trajectory algorithms.

We implement our algorithm on two high DoF robots, PR2 and Baxter, and

present three intuitive mechanisms for providing such incremental feedback. In

our experimental evaluation we consider two context rich settings – household

chores and grocery store checkout – and show that users are able to train the

robot with just a few feedbacks (taking only a few minutes).

9

2.1 Beyond geometric path planning

Recent advances in robotics have resulted in mobile manipulators with high de-

gree of freedom (DoF) arms. However, the use of high DoF arms has so far been

largely successful only in structured environments such as manufacturing sce-

narios, where they perform repetitive motions (e.g., recent deployment of Baxter

on assembly lines). One challenge in the deployment of these robots in unstruc-

tured environments (such as a grocery checkout counter or at our homes) is their

lack of understanding of user preferences and thereby not producing desirable

motions. In this chapter we address the problem of learning preferences over

trajectories for high DoF robots such as Baxter or PR2. We consider a variety of

household chores for PR2 and grocery checkout tasks for Baxter.

A key problem for high DoF manipulators lies in identifying an appropri-

ate trajectory for a task. An appropriate trajectory not only needs to be valid

from a geometric point (i.e., feasible and obstacle-free, the criteria that most

path planners focus on), but it also needs to satisfy the user’s preferences. Such

users’ preferences over trajectories can be common across users or they may

vary between users, between tasks, and between the environments the trajec-

tory is performed in. For example, a household robot should move a glass of

water in an upright position without jerks while maintaining a safe distance

from nearby electronic devices. In another example, a robot checking out a knife

at a grocery store should strictly move it at a safe distance from nearby humans.

Furthermore, straight-line trajectories in Euclidean space may no longer be the

preferred ones. For example, trajectories of heavy items should not pass over

fragile items but rather move around them. These preferences are often hard to

describe and anticipate without knowing where and how the robot is deployed.

10

This makes it infeasible to manually encode them in existing path planners (e.g.,

Zucker et al. [256], Sucan et al. [209], Schulman et al. [195]) a priori.

In this chapter we propose an algorithm for learning user preferences over

trajectories through interactive feedback from the user in a coactive learning set-

ting [199]. In this setting the robot learns through iterations of user feedback.

At each iteration robot receives a task and it predicts a trajectory. The user re-

sponds by slightly improving the trajectory but not necessarily revealing the

optimal trajectory. The robot use this feedback from user to improve its pre-

dictions for future iterations. Unlike in other learning settings, where a human

first demonstrates optimal trajectories for a task to the robot [7], our learning

model does not rely on the user’s ability to demonstrate optimal trajectories a

priori. Instead, our learning algorithm explicitly guides the learning process

and merely requires the user to incrementally improve the robot’s trajectories,

thereby learning preferences of user and not the expert. From these interactive

improvements the robot learns a general model of the user’s preferences in an

online fashion. We realize this learning algorithm on PR2 and Baxter robots,

and also leverage robot-specific design to allow users to easily give preference

feedback.

Our experiments show that a robot trained using this approach can au-

tonomously perform new tasks and if need be, only a small number of inter-

actions are sufficient to tune the robot to the new task. Since the user does not

have to demonstrate a (near) optimal trajectory to the robot, the feedback is eas-

ier to provide and more widely applicable. Nevertheless, it leads to an online

learning algorithm with provable regret bounds that decay at the same rate as

for optimal demonstration algorithms (eg. Ratliff et al. [182]).

11

In our empirical evaluation we learn preferences for two high DoF robots,

PR2 and Baxter, on a variety of household and grocery checkout tasks respec-

tively. We design expressive trajectory features and show how our algorithm

learns preferences from online user feedback on a broad range of tasks for which

object properties are of particular importance (e.g., manipulating sharp objects

with humans in the vicinity). We extensively evaluate our approach on a set of

35 household and 16 grocery checkout tasks, both in batch experiments as well

as through robotic experiments wherein users provide their preferences to the

robot. Our results show that our system not only quickly learns good trajecto-

ries on individual tasks, but also generalizes well to tasks that the algorithm has

not seen before. In summary, our key contributions are:

1. We present an approach for teaching robots which does not rely on ex-

perts’ demonstrations but nevertheless gives strong theoretical guaran-

tees.

2. We design a robotic system with multiple easy to elicit feedback mecha-

nisms to improve the current trajectory.

3. We implement our algorithm on two robotic platforms, PR2 and Baxter,

and support it with a user study.

4. We consider preferences that go beyond simple geometric criteria to cap-

ture object and human interactions.

5. We design expressive trajectory features to capture contextual informa-

tion. These features might also find use in other robotic applications.

In the following section we discuss related works. In section 2.3 we describe

our system and feedback mechanisms. Our learning algorithm and trajectory

12

features are discussed in sections 2.4 and 2.4, respectively. Section 2.6 gives our

experiments and results. We discuss future research directions and conclude in

section 2.7.

2.2 Previous works on learning to plan

Path planning is one of the key problems in robotics. Here, the objective is to

find a collision free path from a start to goal location. Over the last decade many

planning algorithms have been proposed, such as sampling based planners by

Lavalle and Kuffner [137], and Karaman and Frazzoli [107], search based plan-

ners by Cohen et al. [37], trajectory optimizers by Schulman et al. [195], and

Zucker et al. [256] and many more [108]. However, given the large space of

possible trajectories in most robotic applications simply a collision free trajec-

tory might not suffice, instead the trajectory should satisfy certain constraints

and obey the end user preferences. Such preferences are often encoded as a cost

which planners optimize [107, 195, 256]. We address the problem of learning a

cost over trajectories for context-rich environments, and from sub-optimal feed-

back elicited from non-expert users. We now describe related work in various

aspects of this problem.

Learning from Demonstration (LfD): Teaching a robot to produce desired mo-

tions has been a long standing goal and several approaches have been studied.

In LfD an expert provides demonstrations of optimal trajectories and the robot

tries to mimic the expert. Examples of LfD includes, autonomous helicopter

flights [172], ball-in-a-cup game [116], planning 2-D paths [180, 181], etc. Such

settings assume that kinesthetic demonstrations are intuitive to an end-user and

13

it is clear to an expert what constitutes a good trajectory. In many scenarios,

especially involving high DoF manipulators, this is extremely challenging to

do [2].1 This is because the users have to give not only the end-effector’s loca-

tion at each time-step, but also the full configuration of the arm in a spatially

and temporally consistent manner. In Ratliff et al. [182] the robot observes op-

timal user feedback but performs approximate inference. On the other hand,

in our setting, the user never discloses the optimal trajectory or feedback, but

instead, the robot learns preferences from sub-optimal suggestions for how the

trajectory can be improved.

Noisy demonstrations and other forms of user feedback: Some later works

in LfD provided ways for handling noisy demonstrations, under the assump-

tion that demonstrations are either near optimal, as in Ziebart et al. [254], or

locally optimal, as in Levine et al. [141]. Providing noisy demonstrations is dif-

ferent from providing relative preferences, which are biased and can be far from

optimal. We compare with an algorithm for noisy LfD learning in our experi-

ments. Wilson et al. [245] proposed a Bayesian framework for learning rewards

of a Markov decision process via trajectory preference queries. Our approach

advances over [245] and Calinon et. al. [29] in that we model user as a utility

maximizing agent. Further, our score function theoretically converges to user’s

hidden function despite recieving sub-optimal feedback. In the past, various in-

teractive methods (e.g. human gestures) [22, 208] have been employed to teach

assembly line robots. However, these methods required the user to interactively

show the complete sequence of actions, which the robot then remembered for

future use. Recent works by Nikolaidis et al. [169, 170] in human-robot col-

1Consider the following analogy. In search engine results, it is much harder for the user to
provide the best web-pages for each query, but it is easier to provide relative ranking on the
search results by clicking.

14

laboration learns human preferences over a sequence of sub-tasks in assembly

line manufacturing. However, these works are agnostic to the user preferences

over robot’s trajectories. Our work could complement theirs to achieve better

human-robot collaboration.

Learning preferences over trajectories: User preferences over robot’s trajec-

tories have been studied in human-robot interaction. Sisbot et. al. [204, 203] and

Mainprice et. al. [150] planned trajectories satisfying user specified preferences

in form of constraints on the distance of the robot from the user, the visibility

of the robot and the user’s arm comfort. Dragan et. al. [55] used functional gra-

dients [184] to optimize for legibility of robot trajectories. We differ from these

in that we take a data driven approach and learn score functions reflecting user

preferences from sub-optimal feedback.

Planning from a cost function: In many applications, the goal is to find a tra-

jectory that optimizes a cost function. Several works build upon the sampling-

based planner RRT [137] to optimize various cost heuristics [60, 42, 88]. Ad-

ditive cost functions with Lipschitz continuity can be optimized using optimal

planners such as RRT* [107]. Some approaches introduce sampling bias [140]

to guide the sampling based planner. Recent trajectory optimizers such as

CHOMP [184] and TrajOpt [195] provide optimization based approaches to

finding optimal trajectory. Our work is complementary to these in that we learn

a cost function while the above approaches optimize a cost.

Our work is also complementary to few works in path planning. Berenson

et al. [18] and Phillips et al. [175] consider the problem of trajectories for high-

dimensional manipulators. For computational reasons they create a database

15

Figure 2.1: Re-rank feedback mechanism: (Left) Robot ranks trajectories
using the score function and (Middle) displays top three tra-
jectories on a touch screen device (iPad here). (Right) As feed-
back, the user improves the ranking by selecting the third tra-
jectory.

of prior trajectories, which we could leverage to train our system. Other recent

works consider generating human-like trajectories [53, 55, 216]. Humans-robot

interaction is an important aspect and our approach could incorporate similar

ideas.

Application domain: In addition to above mentioned differences we also differ

in the applications we address. We capture the necessary contextual informa-

tion for household and grocery store robots, while such context is absent in

previous works. Our application scenario of learning trajectories for high DoF

manipulations performing tasks in presence of different objects and environ-

mental constraints goes beyond the application scenarios that previous works

have considered. Some works in mobile robotics learn context-rich perception-

driven cost functions, such as Silver et al. [201], Kretzschmar et al. [128] and

Kitani et al. [113]. In this chapter we use features that consider robot configu-

rations, object-object relations, and temporal behavior, and use them to learn a

score function representing the preferences over trajectories.

16

2.3 Coactive learning with incremental feedback

We first give an overview of our robot learning setup and then describe in detail

three mechanisms of user feedback.

2.3.1 Robot learning setup

We propose an online algorithm for learning preferences in trajectories from

sub-optimal user feedback. At each step the robot receives a task as input and

outputs a trajectory that maximizes its current estimate of some score function.

It then observes user feedback – an improved trajectory – and updates the score

function to better match the user preferences. This procedure of learning via

iterative improvement is known as coactive learning. We implement the algo-

rithm on PR2 and Baxter robots, both having two 7 DoF arms. In the process

of training, the initial trajectory proposed by the robot can be far-off the desired

behavior. Therefore, instead of directly executing trajectories in human envi-

ronments, users first visualize them in the OpenRAVE simulator [48] and then

decide the kind of feedback they would like to provide.

2.3.2 Feedback mechanisms

Our goal is to learn even from feedback given by non-expert users. We therefore

require the feedback only to be incrementally better (as compared to being close

to optimal) in expectation, and will show that such feedback is sufficient for the

algorithm’s convergence. This stands in contrast to learning from demonstra-

17

Figure 2.2: Re-ranking feedback: Shows three trajectories for moving egg
carton from left to right. Using the current estimate of score
function robot ranks them as red, green and blue. As feedback
user clicks the green trajectory. Preference: Eggs are fragile.
They should be kept upright and near the supporting surface.

tion (LfD) methods [172, 116, 180, 181] which require (near) optimal demonstra-

tions of the complete trajectory. Such demonstrations can be extremely challeng-

ing and non-intuitive to provide for many high DoF manipulators [2]. Instead,

we found [94, 96] that it is more intuitive for users to give incremental feedback

on high DoF arms by improving upon a proposed trajectory. We now sum-

marize three feedback mechanisms that enable the user to iteratively provide

improved trajectories.

(a) Re-ranking: We display the ranking of trajectories using OpenRAVE [48] on

a touch screen device and ask the user to identify whether any of the lower-

ranked trajectories is better than the top-ranked one. The user sequentially ob-

serves the trajectories in order of their current predicted scores and clicks on the

first trajectory which is better than the top ranked trajectory. Figure 2.1 shows

three trajectories for moving a knife. As feedback, the user moves the trajectory

at rank 3 to the top position. Likewise, Figure 2.2 shows three trajectories for

moving an egg carton. Using the current estimate of score function robot ranks

18

Figure 2.3: Zero-G feedback: Learning trajectory preferences from sub-
optimal zero-G feedback. (Left) Robot plans a bad trajectory
(waypoints 1-2-4) with knife close to flower. As feedback, user
corrects waypoint 2 and moves it to waypoint 3. (Right) User
providing zero-G feedback on waypoint 2.

them as red (1st), green (2nd) and blue (3rd). Since eggs are fragile the user selects

the green trajectory.

(b) Zero-G: This is a kinesthetic feedback. It allows the user to correct trajec-

tory waypoints by physically changing the robot’s arm configuration as shown

in Figure 2.3. High DoF arms such as the Barrett WAM and Baxter have zero-

force gravity-compensation (zero-G) mode, under which the robot’s arms be-

come light and the users can effortlessly steer them to a desired configuration.

On Baxter, this zero-G mode is automatically activated when a user holds the

robot’s wrist (see Figure 2.3, right). We use this zero-G mode as a feedback

method for incrementally improving the trajectory by correcting a waypoint.

This feedback is useful (i) for bootstrapping the robot, (ii) for avoiding local

maxima where the top trajectories in the ranked list are all bad but ordered cor-

rectly, and (iii) when the user is satisfied with the top ranked trajectory except

for minor errors.

(c) Interactive: For the robots whose hardware does not permit zero-G feedback,

such as PR2, we built an alternative interactive Rviz-ROS [74] interface for al-

19

Figure 2.4: Interactive feedback. Task here is to move a bowl filled with
water. The robot presents a bad trajectory with waypoints 1-2-4
to the user. As feedback user moves waypoint 2 (red) to way-
point 3 (green) using Rviz interactive markers. The interactive
markers guides the user to correct the waypoint.

lowing the users to improve the trajectories by waypoint correction. Figure 2.4

shows a robot moving a bowl with one bad waypoint (in red), and the user

provides a feedback by correcting it. This feedback serves the same purpose as

zero-G.

Note that, in all three kinds of feedback the user never reveals the optimal tra-

jectory to the algorithm, but only provides a slightly improved trajectory (in

expectation).

2.4 Learning and feedback model

We model the learning problem in the following way. For a given task, the

robot is given a context x that describes the environment, the objects, and any

other input relevant to the problem. The robot has to figure out what is a good

trajectory y for this context. Formally, we assume that the user has a scoring

function s∗(x, y) that reflects how much he values each trajectory y for context

x. The higher the score, the better the trajectory. Note that this scoring function

20

cannot be observed directly, nor do we assume that the user can actually provide

cardinal valuations according to this function. Instead, we merely assume that

the user can provide us with preferences that reflect this scoring function. The

robot’s goal is to learn a function s(x, y; w) (where w are the parameters to be

learned) that approximates the user’s true scoring function s∗(x, y) as closely as

possible.

Interaction Model. The learning process proceeds through the following re-

peated cycle of interactions.

• Step 1: The robot receives a context x and uses a planner to sample a set of

trajectories, and ranks them according to its current approximate scoring

function s(x, y; w).

• Step 2: The user either lets the robot execute the top-ranked trajectory, or

corrects the robot by providing an improved trajectory ȳ. This provides

feedback indicating that s∗(x, ȳ) > s∗(x, y).

• Step 3: The robot now updates the parameter w of s(x, y; w) based on this

preference feedback and returns to step 1.

Regret. The robot’s performance will be measured in terms of regret, REGT =

1
T

∑T
t=1[s∗(xt, y

∗
t) − s∗(xt, yt)], which compares the robot’s trajectory yt at each time

step t against the optimal trajectory y∗t maximizing the user’s unknown scoring

function s∗(x, y), y∗t = argmaxys∗(xt, y). Note that the regret is expressed in terms

of the user’s true scoring function s∗, even though this function is never observed.

Regret characterizes the performance of the robot over its whole lifetime, there-

fore reflecting how well it performs throughout the learning process. We will

employ learning algorithms with theoretical bounds on the regret for scoring

21

functions that are linear in their parameters, making only minimal assumptions

about the difference in score between s∗(x, ȳ) and s∗(x, y) in Step 2 of the learning

process.

Expert Vs Non-expert user. We refer to an expert user as someone who can

demonstrate the optimal trajectory y∗ to the robot. For example, robotics experts

such as, the pilot demonstrating helicopter maneuver in Abbeel et al. [172]. On

the other hand, our non-expert users never demonstrate y∗. They can only pro-

vide feedback ȳ indicating s∗(x, ȳ) > s∗(x, y). For example, users working with

assistive robots on assembly lines.

2.5 Our approach

For each task, we model the user’s scoring function s∗(x, y) with the following

parametrized family of functions.

s(x, y; w) = w · φ(x, y) (2.1)

w is a weight vector that needs to be learned, and φ(·) are features describing

trajectory y for context x. Such linear representation of score functions have

been previously used for generating desired robot behaviors [172, 181, 254].

We further decompose the score function in two parts, one only concerned

with the objects the trajectory is interacting with, and the other with the object

being manipulated and the environment

s(x, y; wO,wE) = sO(x, y; wO) + sE(x, y; wE)

= wO · φO(x, y) + wE · φE(x, y) (2.2)

22

Figure 2.5: (Left) An environment with a few objects where the robot was
asked to move the cup on the left to the right. (Middle) There
are two ways of moving it, ‘a’ and ‘b’, both are suboptimal in
that the arm is contorted in ‘a’ but it tilts the cup in ‘b’. Given
such constrained scenarios, we need to reason about such sub-
tle preferences. (Right) We encode preferences concerned with
object-object interactions in a score function expressed over a
graph. Here y1, . . . , yn are different waypoints in a trajectory.
The shaded nodes corresponds to environment (table node not
shown here). Edges denotes interaction between nodes.

We now describe the features for the two terms, φO(·) and φE(·) in the follow-

ing.

2.5.1 Features describing object-object interactions

This feature captures the interaction between objects in the environment with

the object being manipulated. We enumerate waypoints of trajectory y as y1, .., yN

and objects in the environment as O = {o1, .., oK}. The robot manipulates the ob-

ject ō ∈ O. A few of the trajectory waypoints would be affected by the other

objects in the environment. For example in Figure 2.5, o1 and o2 affect the way-

point y3 because of proximity. Specifically, we connect an object ok to a trajectory

waypoint if the minimum distance to collision is less than a threshold or if ok lies

23

below ō. The edge connecting y j and ok is denoted as (y j, ok) ∈ E.

Since it is the attributes [124] of the object that really matter in determining

the trajectory quality, we represent each object with its attributes. Specifically, for

every object ok, we consider a vector of M binary variables [l1
k
, .., lM

k
], with each

lm
k
= {0, 1} indicating whether object ok possesses property m or not. For example,

if the set of possible properties are {heavy, fragile, sharp, hot, liquid, electronic},

then a laptop and a glass table can have labels [0, 1, 0, 0, 0, 1] and [0, 1, 0, 0, 0, 0]

respectively. The binary variables l
p

k
and lq indicates whether ok and ō possess

property p and q respectively.2 Then, for every (y j, ok) edge, we extract following

four features φoo(y j, ok): projection of minimum distance to collision along x, y

and z (vertical) axis and a binary variable, that is 1, if ok lies vertically below ō,

0 otherwise.

We now define the score sO(·) over this graph as follows:

sO(x, y; wO) =
∑

(y j,ok)∈E

M∑

p,q=1

l
p

k
lq[wpq · φoo(y j, ok)] (2.3)

Here, the weight vector wpq captures interaction between objects with properties

p and q. We obtain wO in eq. (2.2) by concatenating vectors wpq. More formally,

if the vector at position i of wO is wuv then the vector corresponding to position i

of φO(x, y) will be
∑

(y j,ok)∈E lu
k
lv[φoo(y j, ok)].

2In this work, our goal is to relax the assumption of unbiased and close to optimal feedback.
We therefore assume complete knowledge of the environment for our algorithm, and for the
algorithms we compare against. In practice, such knowledge can be extracted using an object
attribute labeling algorithms such as in [124].

24

2.5.2 Trajectory features

We now describe features, φE(x, y), obtained by performing operations on a set

of waypoints. They comprise the following three types of the features:

Robot arm configurations

While a robot can reach the same operational space configuration for its wrist

with different configurations of the arm, not all of them are preferred [249]. For

example, the contorted way of holding the cup shown in Figure 2.5 may be

fine at that time instant, but would present problems if our goal is to perform

an activity with it, e.g. doing the pouring activity. Furthermore, humans like

to anticipate robots move and to gain users’ confidence, robot should produce

predictable and legible robotic motions [55].

We compute features capturing robot’s arm configuration using the location

of its elbow and wrist, w.r.t. to its shoulder, in cylindrical coordinate system,

(r, θ, z). We divide a trajectory into three parts in time and compute 9 features for

each of the parts. These features encode the maximum and minimum r, θ and

z values for wrist and elbow in that part of the trajectory, giving us 6 features.

Since at the limits of the manipulator configuration, joint locks may happen,

therefore we also add 3 features for the location of robot’s elbow whenever the

end-effector attains its maximum r, θ and z values respectively. Thus obtaining

φrobot(·) ∈ R9 (3+3+3=9) features for each one-third part and φrobot(·) ∈ R27 for the

complete trajectory.

25

Figure 2.6: (Top) A good and bad trajectory for moving a mug. The bad
trajectory undergoes ups-and-downs. (Bottom) Spectrograms
for movement in z-direction: (Left) Good trajectory, (Right)
Bad trajectory.

Orientation and temporal behaviour of the object to be manipulated

Object orientation during the trajectory is crucial in deciding its quality. For

some tasks, the orientation must be strictly maintained (e.g., moving a cup full

of coffee); and for some others, it may be necessary to change it in a particular

fashion (e.g., pouring activity). Different parts of the trajectory may have differ-

ent requirements over time. For example, in the placing task, we may need to

bring the object closer to obstacles and be more careful.

We therefore divide trajectory into three parts in time. For each part we

store the cosine of the object’s maximum deviation, along the vertical axis, from

its final orientation at the goal location. To capture object’s oscillation along

trajectory, we obtain a spectrogram for each one-third part for the movement

of the object in x, y, z directions as well as for the deviation along vertical axis

26

(e.g. Figure 2.6). We then compute the average power spectral density in the

low and high frequency part as eight additional features for each. This gives us

9 (=1+4*2) features for each one-third part. Together with one additional feature

of object’s maximum deviation along the whole trajectory, we get φob j(·) ∈ R
28

(=9*3+1).

Object-environment interactions

This feature captures temporal variation of vertical and horizontal distances of

the object ō from its surrounding surfaces. In detail, we divide the trajectory into

three equal parts, and for each part we compute object’s: (i) minimum vertical

distance from the nearest surface below it. (ii) minimum horizontal distance

from the surrounding surfaces; and (iii) minimum distance from the table, on

which the task is being performed, and (iv) minimum distance from the goal

location. We also take an average, over all the waypoints, of the horizontal and

vertical distances between the object and the nearest surfaces around it.3 To cap-

ture temporal variation of object’s distance from its surrounding we plot a time-

frequency spectrogram of the object’s vertical distance from the nearest surface

below it, from which we extract six features by dividing it into grids. This fea-

ture is expressive enough to differentiate whether an object just grazes over ta-

ble’s edge (steep change in vertical distance) versus, it first goes up and over the

table and then moves down (relatively smoother change). Thus, the features ob-

tained from object-environment interaction are φob j−env(·) ∈ R20 (3*4+2+6=20).

Final feature vector is obtained by concatenating φob j−env, φob j and φrobot, giv-

ing us φE(·) ∈ R75.

3We query PQP collision checker plugin of OpenRave for these distances.

27

2.5.3 Computing trajectory rankings

For obtaining the top trajectory (or a top few) for a given task with context x, we

would like to maximize the current scoring function s(x, y; wO,wE).

y∗ = arg max
y

s(x, y; wO,wE). (2.4)

Second, for a given set {y(1), . . . , y(n)} of discrete trajectories, we need to compute

(2.4). Fortunately, the latter problem is easy to solve and simply amounts to sort-

ing the trajectories by their trajectory scores s(x, y(i); wO,wE). Two effective ways

of solving the former problem are either discretizing the state space [3, 21, 237]

or directly sampling trajectories from the continuous space [19, 47]. Previously,

both approaches have been studied. However, for high DoF manipulators the

sampling based approach [19, 47] maintains tractability of the problem, hence

we take this approach. More precisely, similar to [19], we sample trajectories

using rapidly-exploring random trees (RRT) [137].4 However, naively sampling

trajectories could return many similar trajectories. To get diverse samples of tra-

jectories we use various diversity introducing methods. For example, we intro-

duce obstacles in the environment which forces the planner to sample different

trajectories. Our methods also introduce randomness in planning by initizaling

goal-sample bias of RRT planner randomly. To avoid sampling similar trajec-

tories multiple times, one of our diversity method introduce obstacles to block

waypoints of already sampled trajectories. Recent work by Ross et al. [188]

propose the use of sub-modularity to achieve diversity. For more details on

sampling trajectories we refer interested readers to the work by Erickson and

LaValle [59], and Green and Kelly [77]. Since our primary goal is to learn a score

4When RRT becomes too slow, we switch to a more efficient bidirectional-RRT.The cost func-
tion (or its approximation) we learn can be fed to trajectory optimizers like CHOMP [184] or
optimal planners like RRT* [107] to produce reasonably good trajectories.

28

Algorithm 1: Trajectory Preference Perceptron. (TPP)

Initialize w
(1)

O
← 0, w

(1)

E
← 0

for t = 1 to T do

Sample trajectories {y(1), ..., y(n)}

yt = argmaxys(xt, y; w
(t)

O
,w

(t)

E
)

Obtain user feedback ȳt (Re-ranking, Zero-G, or Interactive)

w
(t+1)

O
← w

(t)

O
+ φO(xt, ȳt) − φO(xt, yt)

w
(t+1)

E
← w

(t)

E
+ φE(xt, ȳt) − φE(xt, yt)

end for

function on trajectories we now describe our learning algorithm.

2.5.4 Learning the scoring function

The goal is to learn the parameters wO and wE of the scoring function

s(x, y; wO,wE) so that it can be used to rank trajectories according to the user’s

preferences. To do so, we adapt the Preference Perceptron algorithm [199] as de-

tailed in Algorithm 1, and we call it the Trajectory Preference Perceptron (TPP).

Given a context xt, the top-ranked trajectory yt under the current parameters wO

and wE, and the user’s feedback trajectory ȳt, the TPP updates the weights in

the direction φO(xt, ȳt) − φO(xt, yt) and φE(xt, ȳt) − φE(xt, yt) respectively. Our up-

date equation resembles to the weights update equation in Ratliff et al. [181].

However, our update does not depends on the availability of optimal demon-

strations.

Despite its simplicity and even though the algorithm typically does not re-

29

ceive the optimal trajectory y∗t = arg maxy s∗(xt, y) as feedback, the TPP enjoys

guarantees on the regret [199]. We merely need to characterize by how much the

feedback improves on the presented ranking using the following definition of

expected α-informative feedback:

Et[s∗(xt, ȳt)] ≥ s∗(xt, yt) + α(s∗(xt, y
∗
t) − s∗(xt, yt)) − ξt

This definition states that the user feedback should have a score of ȳt that is – in

expectation over the users choices – higher than that of yt by a fraction α ∈ (0, 1]

of the maximum possible range s∗(xt, ȳt) − s∗(xt, yt). It is important to note that

this condition only needs to be met in expectation and not deterministically.

This leaves room for noisy and imperfect user feedback. If this condition is not

fulfilled due to bias in the feedback, the slack variable ξt captures the amount of

violation. In this way any feedback can be described by an appropriate combi-

nation of α and ξt. Using these two parameters, the proof by Shivaswamy and

Joachims [199] can be adapted (for proof see Appendix A.1 & A.2) to show that

average regret of TPP is upper bounded by:

E[REGT] ≤ O(
1

α
√

T
+

1

αT

T∑

t=1

ξt)

In practice, over feedback iterations the quality of trajectory y proposed by

robot improves. The α-informative criterion only requires the user to improve y

to ȳ in expectation.

2.6 Application on robots

We first describe our experimental setup, then present quantitative results (Sec-

tion 2.6.2) , and then present robotic experiments on PR2 and Baxter (Sec-

30

tion 2.6.4).

2.6.1 Experimental setup

Task and Activity Set for Evaluation. We evaluate our approach on 35 robotic

tasks in a household setting and 16 pick-and-place tasks in a grocery store check-

out setting. For household activities we use PR2, and for the grocery store set-

ting we use Baxter. To assess the generalizability of our approach, for each

task we train and test on scenarios with different objects being manipulated

and/or with a different environment. We evaluate the quality of trajectories

after the robot has grasped the item in question and while the robot moves it

for task completion. Our work complements previous works on grasping items

[193, 139], pick and place tasks [101], and detecting bar codes for grocery check-

out [114]. We consider the following three most commonly occurring activities

in household and grocery stores:

1. Manipulation centric: These activities are primarily concerned with the ob-

ject being manipulated. Hence the object’s properties and the way the

robot moves it in the environment are more relevant. Examples of such

household activities are pouring water into a cup or inserting pen into a

pen holder, as in Figure 2.7 (Left). While in a grocery store, such activi-

ties could include moving a flower vase or moving fruits and vegetables,

which could be damaged when dropped or pushed into other items. We

consider pick-and-place, pouring and inserting activities with following ob-

jects: cup, bowl, bottle, pen, cereal box, flower vase, and tomato. Further,

in every environment we place many objects, along with the object to be

31

Manipulation centric Environment centric Human centric

(a)Moving flower vase (b)Checking out eggs (c)Manipulating knife

Baxter in a grocery store setting.

(a)Pouring water (b)Moving liquid near laptop (c)Manipulating sharp object

PR2 in a household setting.

Figure 2.7: Robot demonstrating different grocery store and household ac-
tivities with various objects (Left) Manipulation centric: while
pouring water the tilt angle of bottle must change in a partic-
ular manner, similarly a flower vase should be kept upright.
(Middle) Environment centric: laptop is an electronic device
so robot must carefully move water near it, similarly eggs are
fragile and should not be lifted too high. (Right) Human centric:
knife is sharp and interacts with nearby soft items and humans.
It should strictly be kept at a safe distance from humans. (Best
viewed in color)

manipulated, to restrict simple straight line trajectories.

2. Environment centric: These activities are also concerned with the interac-

tions of the object being manipulated with the surrounding objects. Our

object-object interaction features (Section 2.5.1) allow the algorithm to

learn preferences on trajectories for moving fragile objects like egg car-

tons or moving liquid near electronic devices, as in Figure 2.7 (Middle).

We consider moving fragile items like egg carton, heavy metal boxes near

32

a glass table, water near laptop and other electronic devices.

3. Human centric: Sudden movements by the robot put the human in danger

of getting hurt. We consider activities where a robot manipulates sharp

objects such as knife, as in Figure 2.7 (Right), moves a hot coffee cup or a

bowl of water with a human in vicinity.

Experiment setting. Through experiments we will study:

• Generalization: Performance of robot on tasks that it has not seen before.

• No demonstrations: Comparison of TPP to algorithms that also learn in ab-

sence of expert’s demonstrations.

• Feedback: Effectiveness of different kinds of user feedback in absence of

expert’s demonstrations.

Baseline algorithms. We evaluate algorithms that learn preferences from online

feedback under two settings: (a) untrained, where the algorithms learn prefer-

ences for a new task from scratch without observing any previous feedback; (b)

pre-trained, where the algorithms are pre-trained on other similar tasks, and then

adapt to a new task. We compare the following algorithms:

• Geometric: The robot plans a path, independent of the task, using a Bi-

directional RRT (BiRRT) [137] planner.

• Manual: The robot plans a path following certain manually coded prefer-

ences.

• TPP: Our algorithm, evaluated under both untrained and pre-trained set-

tings.

33

• MMP-online: This is an online implementation of the Maximum Margin

Planning (MMP) [181, 183] algorithm. MMP attempts to make an ex-

pert’s trajectory better than any other trajectory by a margin. It can be

interpreted as a special case of our algorithm with 1-informative i.e. opti-

mal feedback. However, directly adapting MMP [181] to our experiments

poses two challenges: (i) we do not have knowledge of the optimal trajec-

tory; and (ii) the state space of the manipulator we consider is too large,

discretizing which makes intractable to train MMP.

To ensure a fair comparison, we follow the MMP algorithm from [181, 183]

and train it under similar settings as TPP. Algorithm 2 shows our imple-

mentation of MMP-online. It is very similar to TPP (Algorithm 1) but with

a different parameter update step. Since both algorithms only observe

user feedback and not demonstrations, MMP-online treats each feedback

as a proxy for optimal demonstration. At every iteration MMP-online

trains a structural support vector machine (SSVM) [104] using all previ-

ous feedback as training examples, and use the learned weights to predict

trajectory scores in the next iteration. Since the argmax operation is per-

formed on a set of trajectories it remains tractable. We quantify closeness

of trajectories by the L2−norm of the difference in their feature represen-

tations, and choose the regularization parameter C for training SSVM in

hindsight, giving an unfair advantage to MMP-online.

Evaluation metrics. In addition to performing a user study (Section 2.6.4), we

also designed two datasets to quantitatively evaluate the performance of our

online algorithm. We obtained experts labels on 1300 trajectories in a grocery

setting and 2100 trajectories in a household setting. Labels were on the basis of

subjective human preferences on a Likert scale of 1-5 (where 5 is the best). Note

34

Algorithm 2: MMP-online

Initialize w
(1)

O
← 0, w

(1)

E
← 0,T = {}

for t = 1 to T do

Sample trajectories {y(1), ..., y(n)}

yt = argmaxys(xt, y; w
(t)

O
,w

(t)

E
)

Obtain user feedback ȳt

T = T ∪ {(xt, ȳt)}

w
(t+1)

O
,w

(t+1)

E
= Train-SSVM(T) (Joachims et al. [104])

end for

that these absolute ratings are never provided to our algorithms and are only

used for the quantitative evaluation of different algorithms.

We evaluate performance of algorithms by measuring how well they rank

trajectories, that is, trajectories with higher Likert score should be ranked higher.

To quantify the quality of a ranked list of trajectories we report normalized dis-

counted cumulative gain (nDCG) [152] — criterion popularly used in Informa-

tion Retrieval for document ranking. In particular we report nDCG at positions

1 and 3, equation (2.6). While nDCG@1 is a suitable metric for autonomous

robots that execute the top ranked trajectory (e.g., grocery checkout), nDCG@3

is suitable for scenarios where the robot is supervised by humans, (e.g., assem-

bly lines). For a given ranked list of items (trajectories here) nDCG at position k

is defined as:

DCG@k =

k∑

i=1

li

log2(i + 1)
(2.5)

nDCG@k =
DCG@k

IDCG@k
, (2.6)

35

Same environment, different object. New Environment, same object. New Environment, different object.

n
D

C
G

@
3

Figure 2.8: Results on Baxter in grocery store setting.

n
D

C
G

@
3

Figure 2.9: Results on PR2 in household setting.

Figure 2.10: Study of generalization with change in object, environment
and both. Manual, Pre-trained MMP-online (—), Untrained
MMP-online (– –), Pre-trained TPP (—), Untrained TPP (– –).

where li is the Likert score of the item at position i in the ranked list. IDCG is

the DCG value of the best possible ranking of items. It is obtained by ranking

items in decreasing order of their Likert score.

2.6.2 Results and discussion

We now present quantitative results where we compare TPP against the baseline

algorithms on our data set of labeled trajectories.

How well does TPP generalize to new tasks? To study generalization of prefer-

ence feedback we evaluate performance of TPP-pre-trained (i.e., TPP algorithm

36

under pre-trained setting) on a set of tasks the algorithm has not seen before. We

study generalization when: (a) only the object being manipulated changes, e.g.,

a bowl replaced by a cup or an egg carton replaced by tomatoes, (b) only the

surrounding environment changes, e.g., rearranging objects in the environment

or changing the start location of tasks, and (c) when both change. Figure 2.10

shows nDCG@3 plots averaged over tasks for all types of activities for both

household and grocery store settings.5 TPP-pre-trained starts-off with higher

nDCG@3 values than TPP-untrained in all three cases. However, as more feed-

back is provided, the performance of both algorithms improves, and they even-

tually give identical performance. We further observe that generalizing to tasks

with both new environment and object is harder than when only one of them

changes.

How does TPP compare to MMP-online? MMP-online while training as-

sumes all user feedback is optimal, and hence over time it accumulates many

contradictory/sub-optimal training examples. We empirically observe that

MMP-online generalizes better in grocery store setting than the household set-

ting (Figure 2.10), however under both settings its performance remains much

lower than TPP. This also highlights the sensitivity of MMP to sub-optimal

demonstrations.

How does TPP compare to Manual? For the manual baseline we encode some

preferences into the planners, e.g., keep a glass of water upright. However,

some preferences are difficult to specify, e.g., not to move heavy objects over

fragile items. We empirically found (Figure 2.10) that the resultant manual

algorithm produces poor trajectories in comparison with TPP, with an aver-

age nDCG@3 of 0.44 over all types of household activities. Table 2.1 reports

5Similar results were obtained with nDCG@1 metric.

37

Figure 2.11: Study of re-rank feedback on Baxter for grocery store setting.

nDCG values averaged over 20 feedback iterations in untrained setting. For

both household and grocery activities, TPP performs better than other baseline

algorithms.

How does TPP perform with weaker feedback? To study the robustness of

TPP to less informative feedback we consider the following variants of re-rank

feedback:

• Click-one-to-replace-top: User observes the trajectories sequentially in order

of their current predicted scores and clicks on the first trajectory which is

better than the top ranked trajectory.

• Click-one-from-5: Top 5 trajectories are shown and user clicks on the one he

thinks is the best after watching all 5 of them.

• Approximate-argmax: This is a weaker feedback, here instead of presenting

top ranked trajectories, five random trajectories are selected as candidate.

The user selects the best trajectory among these 5 candidates. This simu-

lates a situation when computing an argmax over trajectories is prohibitive

38

Table 2.1: Comparison of different algorithms in untrained setting. Ta-
ble contains nDCG@1(nDCG@3) values averaged over 20 feed-
backs.

Grocery store setting on Baxter. Household setting on PR2.

Algorithms
Manip. Environ. Human

Mean
Manip. Environ. Human

Mean
centric centric centric centric centric centric

Geometric .46 (.48) .45 (.39) .31 (.30) .40 (.39) .36 (.54) .43 (.38) .36 (.27) .38 (.40)

Manual .61 (.62) .77 (.77) .33 (.31) .57 (.57) .53 (.55) .39 (.53) .40 (.37) .44 (.48)

MMP-online .47 (.50) .54 (.56) .33 (.30) .45 (.46) .83 (.82) .42 (.51) .36 (.33) .54 (.55)

TPP .88 (.84) .90 (.85) .90 (.80) .89 (.83) .93 (.92) .85 (.75) .78 (.66) .85 (.78)

and therefore approximated.

Figure 2.11 shows the performance of TPP-untrained receiving different kinds

of feedback and averaged over three types of activities in grocery store setting.

When feedback is more α-informative the algorithm requires fewer iterations to

learn preferences. In particular, click-one-to-replace-top and click-one-from-5

are more informative than approximate-argmax and therefore require less feed-

back to reach a given nDCG@1 value. Approximate-argmax improves slowly

since it is least informative. In all three cases the feedback is α-informative, for

some α > 0, therefore TPP-untrained eventually learns the user’s preferences.

2.6.3 Comparison with fully-supervised algorithms

The algorithms discussed so far only observes ordinal feedback where the users

iteratively improves upon the proposed trajectory. In this section we compare

TPP to a fully-supervised algorithm that observes expert’s labels while training.

Eliciting such expert labels on the large space of trajectories is not realizable

39

Figure 2.12: Comparision with fully-supervised Oracle-svm on Baxter for
grocery store setting.

in practice. However, empirically it nonetheless provides an upper-bound on

the generalization to new tasks. We refer to this algorithm as Oracle-svm and

it learns to rank trajectories using SVM-rank [103]. Since expert labels are not

available while prediction, on test set Oracle-svm predicts once and does not

learn from user feedback.

Figure 2.12 compares TPP and Oracle-svm on new tasks. Without observ-

ing any feedback on new tasks Oracle-svm performs better than TPP. However,

after few feedback iterations TPP improves over Oracle-svm, which is not up-

dated since it requires expert’s labels on test set. On average, we observe, it

takes 5 feedback iterations for TPP to improve over Oracle-svm. Furthermore,

learning from demonstration (LfD) can be seen as a special case of Oracle-svm

where, instead of providing an expert label for every sampled trajectory, the

expert directly demonstrates the optimal trajectory.

40

Figure 2.13: Grocery store setting on Baxter.

Figure 2.14: Household setting on PR2.

Figure 2.15: (Left) Average quality of the learned trajectory after every
one-third of total feedback. (Right) Bar chart showing the av-
erage number of feedback (re-ranking and zero-G) and time
required (only for grocery store setting) for each task. Task
difficulty increases from 1 to 10.

2.6.4 Robotic experiment: User study in learning trajectories

We perform a user study of our system on Baxter and PR2 on a variety of tasks

of varying difficulties in grocery store and household settings, respectively.

Thereby we show a proof-of-concept of our approach in real world robotic sce-

narios, and that the combination of re-ranking and zero-G/interactive feedback

allows users to train the robot in few feedback iterations.

Experiment setup: In this study, users not associated with this work, used our

system to train PR2 and Baxter on household and grocery checkout tasks, re-

41

Figure 2.16: Shows trajectories for moving a bowl of water in presence of
human. Without learning robot plans an undesirable trajec-
tory and moves bowl over the human (waypoints 1-3-4). After
six user feedback robot learns the desirable trajectory (way-
points 1-2-4).

spectively. Five users independently trained Baxter, by providing zero-G feed-

back kinesthetically on the robot, and re-rank feedback in a simulator. Two users

participated in the study on PR2. On PR2, in place of zero-G, users provided in-

teractive waypoint correction feedback in the Rviz simulator. The users were

undergraduate students. Further, both users training PR2 on household tasks

were familiar with Rviz-ROS.6 A set of 10 tasks of varying difficulty level was

presented to users one at a time, and they were instructed to provide feedback

until they were satisfied with the top ranked trajectory. To quantify the quality

of learning each user evaluated their own trajectories (self score), the trajectories

learned by the other users (cross score), and those predicted by Oracle-svm, on

a Likert scale of 1-5. We also recorded the total time a user spent on each task

– from start of training till the user was satisfied with the top ranked trajectory.

This includes time taken for both re-rank and zero-G feedback.

Is re-rank feedback easier to elicit from users than zero-G or interactive? In

our user study, on average a user took 3 re-rank and 2 zero-G feedback per

6The smaller user size on PR2 is because it requires users with experience in Rviz-ROS. Fur-
ther, we also observed users found it harder to correct trajectory waypoints in a simulator than
providing zero-G feedback on the robot. For the same reason we report training time only on
Baxter for grocery store setting.

42

Figure 2.17: Shows the learned trajectory for moving an egg carton. Since
eggs are fragile robot moves the carton near the table surface.
(Left) Start of trajectory. (Middle) Intermediate waypoint with
egg close to the table surface. (Right) End of trajectory.

task to train a robot (Table 2.2). From this we conjecture, that for high DoF

manipulators re-rank feedback is easier to provide than zero-G – which requires

modifying the manipulator joint angles. However, an increase in the count of

zero-G (interactive) feedback with task difficulty suggests (Figure 2.15 (Right)),

users rely more on zero-G feedback for difficult tasks since it allows precisely

rectifying erroneous waypoints. Figure 2.16 and Figure 2.17 show two example

trajectories learned by a user.

How many feedback iterations a user takes to improve over Oracle-svm? Fig-

ure 2.15 (Left) shows that the quality of trajectory improves with feedback. On

average, a user took 5 feedback to improve over Oracle-svm, which is also con-

sistent with our quantitative analysis (Section 2.6.3). In grocery setting, users 4

and 5 were critical towards trajectories learned by Oracle-svm and gave them

low scores. This indicates a possible mismatch in preferences between our ex-

pert (on whose labels Oracle-svm was trained) and users 4 and 5.

How do users’ unobserved score functions vary? An average difference of

0.6 between users’ self and cross score (Table 2.2) in the grocery checkout set-

ting suggests preferences varied across users, but only marginally. In situations

43

Table 2.2: Shows learning statistics for each user. Self and cross scores of
the final learned trajectories. The number inside bracket is stan-
dard deviation. (Top) Results for grocery store on Baxter. (Bot-
tom) Household setting on PR2.

User
Re-ranking # Zero-G Average Trajectory-Quality

feedback feedback time (min.) self cross

1 5.4 (4.1) 3.3 (3.4) 7.8 (4.9) 3.8 (0.6) 4.0 (1.4)

2 1.8 (1.0) 1.7 (1.3) 4.6 (1.7) 4.3 (1.2) 3.6 (1.2)

3 2.9 (0.8) 2.0 (2.0) 5.0 (2.9) 4.4 (0.7) 3.2 (1.2)

4 3.2 (2.0) 1.5 (0.9) 5.3 (1.9) 3.0 (1.2) 3.7 (1.0)

5 3.6 (1.0) 1.9 (2.1) 5.0 (2.3) 3.5 (1.3) 3.3 (0.6)

User
Re-ranking # Interactive Trajectory-Quality

feedbacks feedbacks self cross

1 3.1 (1.3) 2.4 (2.4) 3.5 (1.1) 3.6 (0.8)

2 2.3 (1.1) 1.8 (2.7) 4.1 (0.7) 4.1 (0.5)

where this difference is significant and a system is desired for a user population,

a future work might explore coactive learning for satisfying user population,

similar to Raman and Joachims [179]. For household setting, the sample size is

small to draw a similar conclusion.

How long does it take for users to train a robot? We report training time for

only the grocery store setting, because the interactive feedback in the house-

hold setting requires users with experience in Rviz-ROS. Further, we observed

that users found it difficult to modify the robot’s joint angles in a simulator

to their desired configuration. In the grocery checkout setting, among all the

users, user 1 had the strictest preferences and also experienced some early

44

difficulties in using the system and therefore took longer than others. On

an average, a user took 5.5 minutes per task, which we believe is acceptable

for most applications. Future research in human-computer interaction, visu-

alization and better user interfaces [200] could further reduce this time. For

example, simultaneous visualization of top ranked trajectories instead of se-

quentially showing them to users (the scheme we currently adopt) could bring

down the time for re-rank feedback. Despite its limited size, through our user

study we show that our algorithm is realizable in practice on high DoF ma-

nipulators. We hope this motivates researchers to build robotic systems capa-

ble of learning from non-expert users. For more details, videos and code, visit:

http://pr.cs.cornell.edu/coactive/

2.7 Conclusion

When manipulating objects in human environments, it is important for robots

to plan motions that follow users’ preferences. In this chapter we considered

preferences that go beyond simple geometric constraints and that considered

surrounding context of various objects and humans in the environment. We

presented a coactive learning approach for teaching robots these preferences

through iterative improvements from non-expert users. Unlike in standard

learning from demonstration approaches, our approach does not require the

user to provide optimal trajectories as training data. We evaluated our approach

on various household (with PR2) and grocery store checkout (with Baxter) set-

tings. Our experiments suggest that it is indeed possible to train robots within

a few minutes with just a few incremental feedbacks from non-expert users.

45

http://pr.cs.cornell.edu/coactive/

Future research could extend coactive learning to situations with uncertainty

in object pose and attributes. Under uncertainty the trajectory preference per-

ceptron will admit a belief space update form, and theoretical guarantees will

also be different. Coactive feedback might also find use in other interesting

robotic applications such as assistive cars, where a car learns from humans steer-

ing actions. Scaling up feedback by crowd-sourcing and exploring other forms

of easy-to-elicit learning signals are also potential future directions.

46

CHAPTER 3

CROWDSOURCING FEEDBACK FOR PATH PLANNING

The feedback methods like zero-G, interactive feedback, or re-ranking feed-

back are easier to elicit than optimal demonstrations. However, despite their

ease of use, they are difficult to elicit at large scale due to involved physical

interactions between the human and robot. Leveraging robot simulators such

as OpenRAVE [48], Gazebo [117] etc., together with the crowd, through plat-

forms like Amazon Mechanical Turk, is an attractive alternate to gather massive

amounts of weakly labeled data. Since the crowd are not experts, the interac-

tions need to be accordingly designed.

In this chapter we design a crowdsourcing platform – PlanIt, for learning

preferences over trajectories. In order to keep the user interaction simple, on

PlanIt we show videos of robot moving in human environments. As feedback

users simply reveal their like or dislike over parts of the video, but do not reveal

their fine-grained reasoning behind the feedback. This allows us to collect a

large amount of user feedback over many environments. We take a generative

approach with latent variables for modeling the user feedback, and using the

weak and noisy labels from PlanIt we learn the parameters of our model. We test

our approach on 112 different environments for robotic navigation tasks. Our

experiments show that the learned cost function generates preferred trajectories

in human environments. Our crowdsourcing system is publicly available for

the visualization of the learned costs and for providing preference feedback:

http://planit.cs.cornell.edu

47

http://planit.cs.cornell.edu

3.1 Planning affordances

One key problem robots face in performing tasks in human environments is

identifying trajectories desirable to the users. In this chapter we present a

crowdsourcing system PlanIt that learns user preferences by taking their feed-

back over the Internet. In previous works, user preferences are usually en-

coded as a cost over trajectories, and then optimized using planners such as

RRT* [107], CHOMP [184], TrajOpt [195]. However, most of these works op-

timize expert-designed cost functions based on different geometric and safety

criteria [204, 202, 150]. While satisfying safety criteria is necessary, they alone

ignore the contextual interactions in human environments [94]. We take a data

driven approach and learn a context-rich cost over the trajectories from the pref-

erences shown by non-expert users.

In this chapter we model user preferences arising during human activities.

Humans constantly engage in activities with their surroundings – watching TV

or listening to music, etc. – during which they prefer minimal interruption from

external agents that share their environment. For example, a robot that blocks

the view of a human watching TV is not a desirable social agent. How can a robot

learn such preferences and context? This problem is further challenging because

human environments are unstructured, and as shown in Figure 3.1 an environ-

ment can have multiple human activities happening simultaneously. Therefore

generalizing the learned model to new environments is a key challenge.

We formulate the problem as learning to ground each human activity to a

spatial distribution signifying regions crucial to the activity. We refer to these

spatial distributions as planning affordances1 and parameterize the cost function

1Gibson [70] defined object affordances as possible actions that an agent can perform in an

48

Figure 3.1: Various human activities with the objects in the environment
affect how a robot should navigate in the environment. The fig-
ure shows an environment with multiple human activities: (1)
two humans interacting, (2) watching, (3) walking, (4) working,
(5) sitting, and (6) reaching for a lamp. We learn a spatial dis-
tribution for each activity, and use it to build a cost map (aka
planning affordance map) for the complete environment. Us-
ing the cost map, the robot plans a preferred trajectory in the
environment.

using these distributions. Our affordance representation is different by relating

to the object’s functionality, unlike previous works which have an object centric

view. The commonly studied discrete representation of affordances [58, 161,

119, 111] are of limited use in planning trajectories. For example, a TV has a

watchable affordance and undergoes a watching activity, however these labels

themselves are not informative enough to convey to the robot that it should not

move between the user and the TV. The grounded representation we propose is

more useful for planning tasks than the discrete representations.

environment.

49

To generalize well across diverse environments we develop a crowdsourc-

ing web-service PlanIt to collect large-scale preference data. On PlanIt we

show short videos (mostly < 15 sec) to non-expert users of the robot navigat-

ing in context-rich environments with humans performing activities. As feed-

back users label segments of the videos as good, bad or neutral. While previ-

ous methods of eliciting feedback required expensive expert demonstrations in

limited environments, PlanIt is usable by non-expert users and scales to a large

number of environments. This simplicity comes at the cost of weak and noisy

feedback. We present a generative model of the preference data obtained.

We evaluate our approach on a total of 112 bedroom and living room envi-

ronments. We use OpenRave [48] to generate trajectories in these environments

and upload them to PlanIt database for user feedback. We quantitatively evalu-

ate our learned model and compare it to previous works on human-aware plan-

ning. Further, we validate our model on the PR2 robot to navigate in human

environments. The results show that our learned model generalizes well to the

environments not seen before.

In the following sections, we formally state the planning problem, give an

overview of the PlanIt engine in Section 3.4, discuss the cost parametrization

through affordance in Section 3.5.1, describe the learning algorithm in Sec-

tion 3.5.2, and show the experimental evaluation in Section 3.6.

3.2 Previous works on affordances and learning preferences

Learning from demonstration (LfD). One approach to learning preferences is

to mimic an expert’s demonstrations. Several works have built on this idea such

50

as the autonomous helicopter flights [172], the ball-in-a-cup experiment [116],

planning 2-D paths [181], etc. These approaches are applicable in our setting.

However, they are expensive in that they require an expert to demonstrate the

optimal trajectory. Such demonstrations are difficult to elicit on a large scale

and over many environments. Instead we learn with preference data from non-

expert users across a wide variety of environments.

Planning from a cost function. In many applications, the goal is to find a

trajectory that optimizes a cost function. Several works build upon the sampling

based planner RRT [137, 107] to optimize various cost heuristics [42, 88]. Some

approaches introduce sampling bias [140] to guide the planner. Alternative ap-

proaches include recent trajectory optimizers CHOMP [184] and TrajOpt [195].

We are complementary to these works in that we learn a cost function while the

above approaches optimize cost functions.

Modeling human motion for navigation path. Sharing environment with

humans requires robots to model and predict human navigation patterns and

generate socially compliant paths [17, 130, 255]. Recent works [121, 149, 244]

model human motion to anticipate their actions for better human-robot collab-

oration. Instead we model the spatial distribution of human activities and the

preferences associated with those activities.

Affordances in robotics. Many works in robotics have studied affordances.

Most of the works study affordance as cause-effect relations, i.e. the effects of

robot’s actions on objects [58, 231, 233, 161]. We differ from these works in the

representation of affordance and in its application to planning user preferred

trajectories. Further, we consider context-rich environments where humans in-

teract with various objects, while such context was not important to previous

51

works. Similar to Jiang et al. [100], our affordances are also distributions, but

they used them for scene arrangement while we use them for planning.

User preferences in path planning. User preferences have been studied in

human-robot interaction literature. Sisbot et al. [204, 203] and Mainprice et

al. [150] planned trajectories satisfying user specified preferences such as the

distance of the robot from humans, visibility of the robot and human arm com-

fort. Dragan et al. [53] used functional gradients [184] to optimize for legibility

of robot trajectories. We differ from these in that we learn the cost function cap-

turing preferences arising during human-object interactions. Jain et al. [96, 94]

learned a context-rich cost via iterative feedback from non-expert users. Sim-

ilarly, we also learn from the preference data of non-expert users. However,

we use crowdsourcing like Chung et al. [36] for eliciting user feedback which

allows us to learn from large amount of preference data. In experiments, we

compare against Jain’s trajectory preference perceptron algorithm.

3.3 Context-aware planning problem

The planning problem we address is: given a goal configuration G and a

context-rich environment E (containing objects, humans and activities), the

algorithm should output a desirable trajectory T̂ . We consider navigation

trajectories and represent them as a sequence of discrete 2D waypoints, i.e.,

T = {t1, . . . , tn}.

In order to encode the user’s desirability we use a positive cost function Ψ(·)

that maps trajectories to a scalar value. Trajectories with lower cost indicate

greater desirability. We denote the cost of trajectory T in environment E as

52

Figure 3.2: Preference-based Cost calculation of a trajectory. The trajec-
tory TA is preferred over TB because it does not interfere with
the human activities. The cost of a trajectory decomposes over
the waypoints ti, and the cost depends on the location of the
objects and humans associated with an activity.

Ψ(T |E) where Ψ is defined as:

Ψ|E : T −→ R

The context-rich environment E comprises humans, objects and activities.

Specifically, it models the human-human and human-object interactions. The

robot’s goal is to learn the spatial distribution of these interactions in order to

plan good trajectories that minimally interrupt human activities. The key chal-

lenge here lies in designing an expressive cost function that accurately reflects

user preferences, captures the rich environment context, and can be learned

from data.

Figure 3.2 illustrates how the cost of a trajectory is the cumulative effect of

53

the environment at each waypoint. We thus define a trajectory’s cost as a prod-

uct of the costs over each waypoint:

Ψ(T = {t1, .., tn}|E) =
∏

i

Ψai
(ti|E) (3.1)

In the above equation, Ψai
(ti|E) is the cost of waypoint ti and its always pos-

itive.2 Because user preferences vary over activities, we learn a separate cost

for each activity. Ψa(·) denotes the cost associated with an activity a ∈ E. The

robot navigating along a trajectory often interferes with multiple human activi-

ties e.g., trajectory TB in Figure 3.2. Thus we associate with each waypoint ti an

activity ai it interacts with, as illustrated in Eq. (3.1).

The cost function changes with the activities happening in the environment.

As illustrated in Figure 3.2, the robot prefers the trajectory TA over the other-

wise preferred shorter trajectory TB because the latter interferes with human

interactions (e.g., H2 is watching TV).

3.4 PlanIt: A crowdsourcing engine

Rich data along with principled learning algorithms have achieved much suc-

cess in robotics problems such as grasping [41, 157, 173], manipulation [110], tra-

jectory modeling [237] etc. Inspired by such previous works, we design PlanIt:

a scalable approach for learning user preferences over robot trajectories across

a wide-variety of environments: http://planit.cs.cornell.edu

On PlanIt’s webpage users watch videos of robot navigating in contextually-

2Since the cost is always positive, the product of costs in Equation (3.1) is equivalent to the
sum of logarithmic cost.

54

http://planit.cs.cornell.edu

Figure 3.3: PlanIt Interface. Screenshot of the PlanIt video labeling in-
terface. The video shows a human walking towards the door
while other human is browsing books, with text describing the
environment on left. As feedback the user labels the time inter-
val where the robot crosses the human browsing books as red,
and the interval where the robot carefully avoids the walking
human as green. (Best viewed in color)

rich environments and reveal their preferences by labeling video segments (Fig-

ure 3.3). We keep the process simple for users by providing three label choices

{bad, neutral, good}. For example, the trajectory segments where the robot passes

between a human and TV can be labeled as bad, and segments where it navi-

gates in open space as neutral. We now discuss three aspects of PlanIt.

A. Weak labels from PlanIt: In PlanIt’s feedback process, users only label parts

of a trajectory (i.e. sub-trajectory) as good, bad or neutral. For the ease of us-

ability and to reduce the labeling effort, users only provide the labels and do

not reveal the (latent) reason for the labels. We capture the user’s intention as a

latent variable in the learning algorithm (discussed in Section 3.5.2).

55

Figure 3.4: An illustration of our PlanIt system. Our learning system has
three main components (i) cost parameterization through af-
fordance; (ii) The PlanIt engine for receiving user preference
feedback; and (iii) Learning algorithm. (Best viewed in color)

The user feedback in PlanIt is in contrast to other learning-based approaches

such as learning from the expert’s demonstrations (LfD) [172, 116, 181, 2] or

the co-active feedback [96, 94]. In both LfD and co-active learning approaches

it is time consuming and expensive to collect the preference data on a robotic

platform and across many environments. Hence these approaches learn using

limited preference data from users. On the other hand, PlanIt’s main objective is

to leverage the crowd and learn from the non-expert users across a large number

of environments.

B. Generating robot trajectory videos: We sample many trajectories (using

RRT [137]) for the PR2 robot in human environments using OpenRAVE [48].

We video record these trajectories and add them to PlanIt’s trajectory database.

The users watch the short videos of the PR2 interacting with human activities,

and reveal their preferences. We also ensure that trajectories in the database

are diverse by following the ideas presented in [19, 96]. As of now the PlantIt’s

56

database has 2500 trajectories over 112 environments. In Section 3.6 we describe

the data set.

C. Learning system: In our learning system, illustrated in Figure 3.4, the

learned model improves as more preference data from users become available.

We maintain an affordance library with spatial distributions for each human ac-

tivity. When the robot observes an environment, it uses the distributions from

the library and builds a planning affordance map (aka cost function) for the

environment. The robot then samples trajectories from the cost function and

presents them on the PlanIt engine for feedback.

3.5 Learning algorithm

We first discuss our parameterization of the cost function and then the proce-

dure for learning the model parameters.

3.5.1 Cost parameterization through affordance

In order to plan trajectories in human environments we model the human-object

relationships. These relationships are called ‘object affordances’. In this chapter

we model the affordances such that they are relevant to path planning and we

refer to them as ‘planning affordances’.

Specifically, we learn the spatial distribution of the human-object interac-

tions. For example, a TV has a watchable affordance and therefore the space

between the human and the TV is relevant for the watching activity. Since a

57

(a) Watching (b) Interacting (c) Working

Figure 3.5: An example the learned planning affordance. In the top-view,
the human is at the center and facing the object on the right (1m
away). Dimension is 2m×2m. (Best viewed in color)

watchable label by itself is not informative enough to help in planning we ground

it to a spatial distribution. Figure 3.5(a) illustrates the learned spatial distribu-

tion when the human watches TV. Similarly, a chair is sittable and moveable, but

when in use the space behind the chair is critical (because the human sitting on

it might move back).

Ψa(ti|E) =






Ψa,ang,h Ψa,ang,o Ψa,β

if a ∈ activities with human and

object at distance.

Ψa,ang,h Ψa,dist,h

if a ∈ activities with human and

object in close proximity.

(3.2)

We consider the planning affordance for several activities (e.g., watching, in-

teracting, working, sitting, etc.). For each activity we model a separate cost func-

tion Ψa and evaluate trajectories using Eq. (3.1). We consider two classes of

58

activities: in the first, the human and object are in close proximity (sitting, work-

ing, reaching etc.) and in the second, they are at a distance (walking, watching,

interacting etc.). The affordance varies with the distance and angle between the

human and the object. We parameterize the cost as follows:

Angular preference Ψa,ang(·): Certain angular positions w.r.t. the human and the

object are more relevant for certain activities. For example, the spatial distribu-

tion for the watching activity is spread over a wider angle than the interacting

activity (see Figure 3.5). We capture the angular distribution of the activity in

the space separating the human and the object with two cost functions Ψa,ang,h

and Ψa,ang,o, centered at human and object respectively. For activities with close-

proximity between the human and the object we define a single cost centered at

human. We parameterize the angular preference cost using the von-Mises distri-

bution as:

Ψa,ang,(·)(xti; µ, κ) =
1

2πI0(κ)
exp(κµT xti) (3.3)

In the above equation, µ and κ are parameters that we will learn from the data,

and xti is a two-dimensional unit vector. As illustrated in Figure 3.6, we obtain

xti by projecting the waypoint ti onto the co-ordinate frame (x and y axis) defined

locally for the human-object activity.

Distance preference Ψa,dist: The preferences vary with the robot distance from the

human and the object. Humans do not prefer robots very close to them, espe-

cially when the robot is right-in-front or passes from behind [204]. Figure 3.5c

shows the cost function learned by PlanIt. It illustrates that working humans

do not prefer robots passing them from behind. We capture this by adding a

1D-Gaussian parameterized by a mean and variance, and centered at human.

Edge preference Ψa,β: For activities where the human and the object are separated

59

Figure 3.6: Human side of local co-ordinate system for watching activity.
Similar co-ordinates are defined for the object human interacts
with. Unit vector xti is the projection of waypoint ti on x-y axis
and normalized it by its length. Distance between human and
object is dh−o, and ti projected on x-axis is of length dti .

by a distance, the preferences vary along the line connecting human and object.

We parameterize this cost using a beta distribution which captures the relevance

of the activity along the human-object edge. Figure 3.7 illustrates that in the

watching activity users prefer robots to cross farther away from them, whereas

for the interacting activity the preference is symmetric w.r.t. the humans. To cal-

culate this cost for the waypoint ti, we first take its distance from the human and

project it along the line joining the human and the object dti , and then normal-

ize it by the distance dh−o between the human and the object. The normalized

distance is d̄ti = dti/dh−o. In the equation below, we learn the parameters α and β.

Ψa,β(d̄ti;α, β) =
d̄α−1

ti
(1 − d̄ti)

β−1

B(α, β)
; d̄ti ∈ [0, 1] (3.4)

The functions used in Eq. (3.1) thus define our cost function. This, however,

has many parameters (30) that need to be learned from data.

60

(a) Interacting (b) Watching

Figure 3.7: Result of learned edge preference. Distance between human
and object is normalized to 1. Human is at 0 and object at 1.
For interacting activity, edge preference is symmetric between
two humans, but for watching activity humans do not prefer
the robot passing very close to them.

3.5.2 Generative model

Given the user preference data from PlanIt we learn the parameters of Eq. (3.1).

In order to keep the data collection easy we only elicit labels (bad, neutral or

good) on the segments of the videos. The users do not reveal the human activ-

ity they think is being affected by the trajectory waypoint they labeled. In fact

a waypoint can influence multiple activities. As illustrated in Figure 3.8 a way-

point between the humans and the TV can affect multiple watching activities.

We define a latent random variable zi
a ∈ {0, 1} for the waypoint ti; which is

1 when the waypoint ti affects the activity a and 0 otherwise. From the user

preference data we learn the following cost function:

Ψ({t1, .., tk}|E) =

k∏

i=1

∑

a∈AE

p(zi
a|E) Ψa(ti|E)

︸ ︷︷ ︸

Marginalizing latent variable zi
a

(3.5)

In the above equation, p(zi
a|E) (denoted with ηa) is the (prior) probability of user

61

Figure 3.8: Watching activity example. Three humans watching a TV.

Figure 3.9: Feedback model. Generative model of the user preference
data.

data arising from activity a, and AE is the set of activities in environment E.3

Figure 3.9 shows the generative process for preference data.

Training data: We obtain users preferences over n environments E1, .., En. For

each environment E we consider m trajectory segments TE,1, ..,TE,m labeled as

bad by users. For each segment T we sample k waypoints {tT ,1, .., tT ,k}. We use

Θ ∈ R
30 to denote the model parameters and solve the following maximum

3We extract the information about the environment and activities by querying OpenRAVE.
In practice and in the robotic experiments, human activity information can be obtained using
the software package by Koppula et al. [119].

62

likelihood problem:

Θ
∗
= arg max

Θ

n∏

i=1

m∏

j=1

Ψ(TEi, j|Ei;Θ)

=

arg max
Θ

n∏

i=1

m∏

j=1

k∏

l=1

∑

a∈AEi

p(zl
a|Ei;Θ)

Ψa(tTEi , j
,l|Ei;Θ)

(3.6)

Eq. (3.6) does not have a closed form solution. We follow the Expectation-

Maximization (EM) procedure to learn the model parameters. In the E-step we

calculate the posterior activity assignment p(zl
a|tTEi , j

,l, Ei) for all the waypoints,

and in the M-step we update the parameters.

E-step: In this step, with fixed model parameters, we calculate the posterior

probability of an activity being affected by a waypoint, as follows:

p(za|t, E;Θ) =
p(za|E;Θ)Ψa(t|E;Θ)

∑

a∈AE
p(za|E;Θ)Ψa(t|E;Θ)

(3.7)

We calculate the above probability for every activity a and the waypoint t la-

beled by users in our data set.

M-step: Using the probabilities calculated in the E-step we update the model

parameters in the M-step. Our affordance representation consists of three dis-

tributions, namely: Gaussian, von-Mises and Beta. We update the parameters

of the Gaussian, and the mean (µ) of the von-Mises in closed form. To update

the variance (κ) of the von-Mises we follow the first order approximation pro-

posed by Sra [206]. Finally the parameters of the beta distribution (α and β) are

updated approximately by using the first and the second order moments of the

data. As an example below we give the M-step update of the mean µa of the

von-Mises.

µa =

∑n
i=1

∑m
j=1

∑k
l=1 p(zl

a|{tTEi , j
,l}, Ei)x{tTEi , j

,l}

‖∑n
i=1

∑m
j=1

∑k
l=1 p(zl

a|{tTEi , j
,l}, Ei)x{tTEi , j

,l}‖
(3.8)

63

3.6 Experiments on PlanIt

Our data set consists of 112 context-rich 3D-environments that resemble real liv-

ing rooms or bedrooms. We create them by downloading 2D-images of real en-

vironments from the Google images and reconstructing their corresponding 3D

models using OpenRAVE [48].4 Figure 3.10 shows some example environments

and their corresponding 2D images. We depict human activities by adding to

the 3D models different human poses obtained from the Kinect (refer Figure

3 in [100] for the human poses). In our experiments we consider six activities:

walking, watching, interacting, reaching, sitting and working as shown in Figure 3.1.

For these environments we generate trajectory videos and add them to the

PlanIt database. We crowdsource 2500 trajectory videos through PlanIt and for

each trajectory a user labeled segments of it as bad, neutral or good, correspond-

ing to the scores 1, 3 and 5 respectively.

3.6.1 Baseline algorithms

We consider the following baseline cost functions:

• Chance: Uniformly randomly assigns a cost in interval [0,1] to a trajectory.

• Maximum Clearance Planning (MCP): Inspired by Sisbot et al. [204], this

heuristic favors trajectories which stay farther away from objects. The

MCP cost of a trajectory is the (negated) root mean square distance from

the nearest object across the trajectory waypoints.

4For reconstructing 3D environments we download 3D object (.obj) files off the web, mainly
from the Google warehouse.

64

Figure 3.10: Examples from our dataset: four living room and two bed-
room environments. On left is the 2D image we download
from Google images. On right are the 3D reconstructed en-
vironments in OpenRAVE. All environments are rich in the
types and number of objects and often have multiple humans
perform different activities.

• Human Interference Count (HIC): HIC cost of a trajectory is the number of

times it interferes with human activities. Interfering rules were hand de-

signed on expert’s opinion.

• Metropolis Criterion Costmap (MCC): Similar to Mainprice et al. [150], a

trajectory’s cost exponentially increases with its closeness to surround-

ing objects. The MCC cost of a trajectory is defined as follows: cti =

65

mino∈O dist(ti, o)

Ψmc(ti) =






e−cti cti < 1m

0 otherwise

MCC(T = {t1, .., tn}) =
∑n

i=1Ψmc(ti)

n

dist(ti, o) is the euclidean distance between the waypoint ti and the object

o.

• HIC scaled with MCC: We design this heuristic by combining the HIC

and the MCC costs. The HICMCC cost of a trajectory is HICMCC(T) =

MCC(T) ∗ HIC(T)

• Trajectory Preference Perceptron (TPP): Jain et al. [96] learns a cost function

from co-active user feedback in an online setting. We compare against the

TPP using trajectory features from [96].

The above described baselines assign cost to trajectories and lower cost is pre-

ferred. For quantitative evaluation each trajectory is also assigned a ground

truth score based on the user feedback from PlanIt. The ground truth score of a

trajectory is the minimum score given by a user.5 For example if two segments

of a trajectory are labeled with scores 3 (neutral) and 5 (good), then the ground

truth score is 3. We denote the ground truth score of trajectory T as score(T).

3.6.2 Evaluation metric

Given the ground truth scores we evaluate algorithms based on the following

metrics.
5The rationale behind this definition of the ground truth score is that a trajectory with a single

bad waypoint is considered to be overall bad.

66

• Misclassification rate: For a trajectory Ti we consider the set of trajectories

Ti with higher ground truth score: Ti = {T |score(T) > score(Ti)}. The

misclassification rate of an algorithm is the number of trajectories in Ti

which it assigns a higher cost than Ti. We normalize this count by the

number of trajectories in Ti and average it over all the trajectories Ti in the

data set. Lower misclassification rate is desirable.

• Normalized discounted cumulative gain (nDCG) [152]: This metric quantifies

how well an algorithm rank trajectories. It is a relevant metric because

autonomous robots can rank trajectories and execute the top ranked tra-

jectory [47, 96]. Obtaining a rank list simply amounts to sorting the trajec-

tories based on their costs.

3.6.3 Results

We evaluate the trained model for its:

• Discriminative power: How well can the model distinguish good/bad tra-

jectories?

• Interpretability: How well does the qualitative visualization of the cost

function heatmaps match our intuition?

3.6.4 Discriminative power of learned cost function

A model trained on users preferences should reliably distinguish good from bad

trajectories i.e. if we evaluate two trajectories under the learned model then it

67

Table 3.1: Misclassification rate: chances that an algorithm presented with
two trajectories (one good and other bad) orders them incor-
rectly. Lower rate is better. The number inside bracket is stan-
dard error.

Algorithms Bedroom Living room

Chance .52 (-) .48 (-)

MCP based on Sisbot et al. [204] .46 (.04) .42 (.06)

MCC based on Mainprice et al. [150] .44 (.03) .42 (.06)

HIC .30 (.04) .23 (.06)

HICMCC .32 (.04) .29 (.05)

TPP based on Jain et al. [96] .33 (.03) .34 (.05)

Ours within scenario evaluation .32 (.05) .19 (.03)

Ours cross scenario evaluation .27 (.04) .17 (.05)

should assign a lower cost to the better trajectory. We compare algorithms under

two training settings: (i) within-env: we test and train on the same category

of environment using 5-fold cross validation, e.g. training on bedrooms and

testing on new bedrooms; and (ii) cross-env: we train on bedrooms and test on

living rooms, and vice-versa. In both settings the algorithms were tested on

environments not seen before.

How well algorithms discriminate between trajectories? We compare al-

gorithms on the evaluation metrics described above. As shown in Table 3.1

our algorithm gives the lowest misclassification rate in comparison to the base-

line algorithms. We also observe that the misclassification rate on bedrooms is

lower with cross-env training than within-env. We conjecture this is because of

a harder learning problem (on average) when training on bedrooms than living

rooms. In our data set, on average a bedroom have 3 human activities while a

living room have 2.06. Therefore the model parameters converge to better op-

tima when trained on living rooms. As illustrated in Figure 3.11, our algorithm

68

Figure 3.11: nDCG plots comparing algorithms on bedroom (left) and liv-
ing room (right) environments. Error bar indicates standard
error.

also ranks trajectories better than other baseline algorithms.

Crowdsourcing helps and so does learning preferences! We compare our

approach to TPP learning algorithm by Jain et al. [96]. TPP learns with co-active

feedback which requires the user to iteratively improve the trajectory proposed

by the system. This feedback is time consuming to elicit and therefore difficult

to scale to many environments. On both evaluation metrics our crowdsourc-

ing approach outperforms TPP, which is trained on fewer environments. Fig-

ure 3.12 shows our model improves as users provide more feedback through

PlanIt. Our data-driven approach is also a better alternative to hand-designed

cost functions.

3.6.5 Interpretability: Qualitative visualization of learned cost

Visualizing the learned heatmaps is useful for understanding the spatial dis-

tribution of human-object activities. We discussed the learned heatmaps for

watching, interacting and working activities in Section 3.5.1 (see Figure 3.5).

69

Figure 3.12: Crowdsourcing improves performance: Misclassification
rate decreases as more users provide feedback via PlanIt.

(a) Edge preference for walking (b) Walking (c) Sitting

Figure 3.13: Learned affordance heatmaps. (a) Edge preference for walk-
ing activity. Human is at 0 and object at 1. (b,c) Top view of
heatmaps. Human is at the center and facing right.

Figure 3.13 illustrates the heatmap for the walking, and sitting activities.

How does crowd preferences change with the nature of activity? For the

same distance between the human and the object, the spatial preference learned

from the crowd is less-spread for interacting activity than watching and walking

activities, as shown in Figure 3.5. This empirical evidence implies that while

70

(a) Bedroom (b) Planning affordance

Figure 3.14: Planning affordance map for an environment. Bedroom
with sitting, reaching and watching activities. A robot uses
the affordance map as a cost for planning good trajectories.

interacting humans do not mind the robot in vicinity unless it blocks their eye

contact. The preferences also vary along the line joining the human and object.

As shown in Figure 3.7, while watching TV the space right in front of the human

is critical, and the edge-preference rapidly decays as we move towards the TV.

On the other hand, when human is walking towards an object the decay in edge-

preference is slower, Figure 3.13(a).

Using the PlanIt system and the cost map of individual activities, a.k.a. af-

fordance library, we generate the planning map of environments with multiple

activities. Some examples of the planning map are shown in Figure 3.14.

3.6.6 Robotic experiment

In order to plan trajectories in an unseen environment we generate its planning

map and use it as an input cost to the RRT [137] planner. Given the cost func-

tion, RRT plans trajectories with low cost. We implement our learned model on

PR2 robot for the purpose of navigation when the human is watching a football

71

Figure 3.15: Robotic experiment: A screen-shot of our algorithm run-
ning on PR2. Without learning robot blocks the view of the
human watching football. http://planit.cs.cornell.
edu/video

match on the TV (Figure 3.15). Without learning the preferences, the robot plans

the shortest path to the goal and obstructs the human’s view of TV. Demonstra-

tion: http://planit.cs.cornell.edu/video

3.7 Conclusion

In this chapter we proposed a crowdsourcing approach for learning user pref-

erences over trajectories. Our PlanIt system is user-friendly and easy-to-use for

eliciting large scale preference data from non-expert users. The simplicity of

PlanIt comes at the expense of weak and noisy labels with latent annotator in-

tentions. We presented a generative approach with latent nodes to model the

preference data. Through PlanIt we learn spatial distribution of activities in-

volving humans and objects. We experimented on many context-rich living and

bedroom environments. Our results validate the advantages of crowdsourc-

ing and learning the cost over hand encoded heuristics. We also implemented

72

http://planit.cs.cornell.edu/video
http://planit.cs.cornell.edu/video
http://planit.cs.cornell.edu/video

our learned model on the PR2 robot. PlanIt is publicly available for visualizing

learned cost function heatmaps, viewing robotic demonstration, and providing

preference feedback http://planit.cs.cornell.edu

73

http://planit.cs.cornell.edu

CHAPTER 4

ANTICIPATING MANEUVERS FROM IMPLICIT DRIVING SIGNALS

Driving a car is one of the most naturally occurring interaction between a

human and a robot (i.e. the car). In this chapter we address the question: what

can a car learn by observing its driver?

Most of the modern cars comes equipped with sensors like radars, cameras,

GPS etc., that can automatically detect maneuvers like lane changes, turns, brak-

ing etc. By observing many drivers drive their cars, we learn to anticipate driv-

ing maneuvers before they happen. It turns out that eliciting training examples

from the drivers for this task is a very natural process. We let drivers drive the

car to their destination and they implicitly provide many examples of maneu-

vers (lane changes, turns etc.).

4.1 Motivation for maneuver anticipation

Advanced Driver Assistance Systems (ADAS) have made driving safer over the

last decade. They prepare vehicles for unsafe road conditions and alert drivers

if they perform a dangerous maneuver. However, many accidents are unavoid-

able because by the time drivers are alerted, it is already too late. Anticipating

maneuvers beforehand can alert drivers before they perform the maneuver and

also give ADAS more time to avoid or prepare for the danger.

In this chapter we propose a vehicular sensor-rich platform and learning

algorithms for maneuver anticipation. For this purpose we equip a car with

cameras, Global Positioning System (GPS), and a computing device to capture

the driving context from both inside and outside of the car. In order to antici-

74

pate maneuvers, we propose a sensory-fusion deep learning architecture which

jointly learns to anticipate and fuse multiple sensory streams. Our architecture

consists of Recurrent Neural Networks (RNNs) that use Long Short-Term Mem-

ory (LSTM) units to capture long temporal dependencies. We propose a novel

training procedure which allows the network to predict the future given only

a partial temporal context. We introduce a diverse data set with 1180 miles of

natural freeway and city driving, and show that we can anticipate maneuvers

3.5 seconds before they occur in real-time with a precision and recall of 90.5%

and 87.4% respectively.

4.2 Robotic anticipation

Over the last decade cars have been equipped with various assistive technolo-

gies in order to provide a safe driving experience. Technologies such as lane

keeping, blind spot check, pre-crash systems etc., are successful in alerting

drivers whenever they commit a dangerous maneuver [136]. Still in the US

alone more than 33,000 people die in road accidents every year, the majority

of which are due to inappropriate maneuvers [167]. We therefore need mecha-

nisms that can alert drivers before they perform a dangerous maneuver in order

to avert many such accidents [190].

In this chapter we address the problem of anticipating maneuvers that a

driver is likely to perform in the next few seconds. Figure 4.1 shows our system

anticipating a left turn maneuver a few seconds before the car reaches the in-

tersection. Our system also outputs probabilities over the maneuvers the driver

can perform. With this prior knowledge of maneuvers, the driver assistance sys-

75

0.1

0.2

0.7

Face

Camera

Road Camera

Figure 4.1: Anticipating maneuvers. Our algorithm anticipates driving
maneuvers performed a few seconds in the future. It uses in-
formation from multiple sources including videos, vehicle dy-
namics, GPS, and street maps to anticipate the probability of
different future maneuvers.

tems can alert drivers about possible dangers before they perform the maneu-

ver, thereby giving them more time to react. Some previous works [68, 132, 163]

also predict a driver’s future maneuver. However, as we show in the following

sections, these methods use limited context and/or do not accurately model the

anticipation problem.

In order to anticipate maneuvers, we reason with the contextual information

from the surrounding events, which we refer to as the driving context. We obtain

this driving context from multiple sources. We use videos of the driver inside

the car and the road in front, the vehicle’s dynamics, global position coordinates

(GPS), and street maps; from this we extract a time series of multi-modal data

from both inside and outside the vehicle. The challenge lies in modeling the

temporal aspects of driving and fusing the multiple sensory streams. In this

work we propose a specially tailored approach for anticipation in such sensory-

rich settings.

76

Anticipation of the future actions of a human is an important perception task

with applications in robotics and computer vision [130, 255, 113, 121, 244]. It re-

quires the prediction of future events from a limited temporal context. This dif-

ferentiates anticipation from activity recognition [244], where the complete tem-

poral context is available for prediction. Furthermore, in sensory-rich robotics

settings like ours, the context for anticipation comes from multiple sensors. In

such scenarios the end performance of the application largely depends on how

the information from different sensors are fused. Previous works on anticipa-

tion [113, 121, 130] usually deal with single-data modality and do not address

anticipation for sensory-rich robotics applications. Additionally, they learn rep-

resentations using shallow architectures [91, 113, 121, 130] that cannot handle

long temporal dependencies [13].

In order to address the anticipation problem more generally, we propose a

Recurrent Neural Network (RNN) based architecture which learns rich repre-

sentations for anticipation. We focus on sensory-rich robotics applications, and

our architecture learns how to optimally fuse information from different sen-

sors. Our approach captures temporal dependencies by using Long Short-Term

Memory (LSTM) units. We train our architecture in a sequence-to-sequence pre-

diction manner (Figure 4.2) such that it explicitly learns to anticipate given a

partial context, and we introduce a novel loss layer which helps anticipation by

preventing over-fitting.

We evaluate our approach on a driving data set with 1180 miles of natural

freeway and city driving collected across two states – from 10 drivers and with

different kinds of driving maneuvers. The data set is challenging because of the

variations in routes and traffic conditions, and the driving styles of the drivers

77

1ܠଶܠ ଷܠ �ܠ

ܡ ܡ ܡ ,1ܠሺܡ ,ଶܠ … , ሻ�ܠ → Training exampleܡ

Training RNN for anticipation

1ܠ �ܠ

,1ܠሺ�ܡ ,ଶܠ … , ሻTest example�ܠ

Anticipation given partial context

?

1 � 1 �� =
Figure 4.2: (Left) Shows training RNN for anticipation in a sequence-to-

sequence prediction manner. The network explicitly learns
to map the partial context (x1, .., xt) ∀t to the future event y.
(Right) At test time the network’s goal is to anticipate the fu-
ture event as soon as possible, i.e. by observing only a partial
temporal context.

(Figure 4.3). We demonstrate that our deep learning sensory-fusion approach

anticipates maneuvers 3.5 seconds before they occur with 84.5% precision and

77.1% recall while using out-of-the-box face tracker. With more sophesticated

3D pose estimation of the face, our precision and recall increases to 90.5% and

87.4% respectively. We believe that our work creates scope for new ADAS fea-

tures to make roads safer. In summary our key contributions are as follows:

• We propose an approach for anticipating driving maneuvers several sec-

onds in advance.

• We propose a generic sensory-fusion RNN-LSTM architecture for antici-

pation in robotics applications.

78

Figure 4.3: Variations in the data set. Images from the data set [91] for
a left lane change. (Left) Views from the road facing camera.
(Right) Driving style of the drivers vary for the same maneu-
ver.

• We release the first data set of natural driving with videos from both inside

and outside the car, GPS, and speed information.

• We release an open-source deep learning package NeuralModels which

is especially designed for robotics applications with multiple sensory

streams.

Our data set and deep learning code are publicly available at: http://www.

brain4cars.com

4.3 Assistive cars and related works

Our work builds upon the previous works on assisitive vehicular technologies,

anticipating human activities, learning temporal models, and computer vision

methods for analyzing human face.

79

ch3:https://github.com/asheshjain399/NeuralModels
http://www.brain4cars.com
http://www.brain4cars.com

Assistive features for vehicles. Latest cars available in market comes equipped

with cameras and sensors to monitor the surrounding environment. Through

multi-sensory fusion they provide assisitive features like lane keeping, forward

collision avoidance, adaptive cruise control etc. These systems warn drivers

when they perform a potentially dangerous maneuver [198, 235]. Driver moni-

toring for distraction and drowsiness has also been extensively researched [66,

185]. Techniques like eye-gaze tracking are now commercially available (See-

ing Machines Ltd.) and has been effective in detecting distraction. Our work

complements existing ADAS and driver monitoring techniques by anticipating

maneuvers several seconds before they occur.

Closely related to us are previous works on predicting the driver’s intent.

Vehicle trajectory has been used to predict the intent for lane change or turn

maneuver [20, 68, 132, 145]. Most of these works ignore the rich context avail-

able from cameras, GPS, and street maps. Previous works have addressed ma-

neuver anticipation [1, 163, 51, 230] through sensory-fusion from multiple cam-

eras, GPS, and vehicle dynamics. In particular, Morris et al. [163] and Trivedi et

al. [230] used Relevance Vector Machine (RVM) for intent prediction and per-

formed sensory fusion by concatenating feature vectors. We will show that

such hand designed concatenation of features does not work well. Furthermore,

these works do not model the temporal aspect of the problem properly. They

assume that informative contextual cues always appear at a fixed time before

the maneuver. We show that this assumption is not true, and in fact the tem-

poral aspect of the problem should be carefully modeled. In contrast to these

works, our RNN-LSTM based sensory-fusion architecture captures long tem-

poral dependencies through its memory cell and learns rich representations for

anticipation through a hierarchy of non-linear transformations of input data.

80

Our work is also related to works on driver behavior prediction with differ-

ent sensors [87, 66, 65], and vehicular controllers which act on these predic-

tions [198, 235, 56].

Anticipation and Modeling Humans. Modeling of human motion has given

rise to many applications, anticipation being one of them. Anticipating hu-

man activities has shown to improve human-robot collaboration [244, 123,

149, 120, 54]. Similarly, forecasting human navigation trajectories has enabled

robots to plan sociable trajectories around humans [113, 17, 130, 90]. Feature

matching techniques have been proposed for anticipating human activities from

videos [192]. Modeling human preferences has enabled robots to plan good tra-

jectories [55, 204, 94, 93]. Similar to these works, we anticipate human actions,

which are driving maneuvers in our case. However, the algorithms proposed

in the previous works do not apply in our setting. In our case, anticipating

maneuvers requires modeling the interaction between the driving context and

the driver’s intention. Such interactions are absent in the previous works, and

they use shallow architectures [13] that do not properly model temporal aspects

of human activities. They further deal with a single data modality and do not

tackle the challenges of sensory-fusion. Our problem setup involves all these

challenges, for which we propose a deep learning approach which efficiently

handles temporal dependencies and learns to fuse multiple sensory streams.

Analyzing the human face. The vision approaches related to our work are face

detection and tracking [238, 250], statistical models of face [38] and pose esti-

mation methods for face [248]. Active Appearance Model (AAM) [38] and its

variants [153, 247] statistically model the shape and texture of the face. AAMs

have also been used to estimate the 3D-pose of a face from a single image [248]

81

and in design of assistive features for driver monitoring [185, 218]. In our ap-

proach we adapt off-the-shelf available face detection [238] and tracking algo-

rithms [196] (see Section 4.7). Our approach allows us to easily experiment with

more advanced face detection and tracking algorithms. We demonstrate this

by using the Constrained Local Neural Field (CLNF) model [9] and tracking 68

fixed landmark points on the driver’s face and estimating the 3D head-pose.

Learning temporal models. Temporal models are commonly used to model

human activities [122, 162, 242, 243]. These models have been used in both dis-

criminative and generative fashions. The discriminative temporal models are

mostly inspired by the Conditional Random Field (CRF) [133] which captures

the temporal structure of the problem. Wang et al. [243] and Morency et al. [162]

propose dynamic extensions of the CRF for image segmentation and gesture

recognition respectively. On the other hand, generative approaches for tempo-

ral modeling include various filtering methods, such as Kalman and particle fil-

ters [225], Hidden Markov Models, and many types of Dynamic Bayesian Net-

works [164]. Some previous works [20, 131, 171] used HMMs to model different

aspects of the driver’s behaviour. Most of these generative approaches model

how latent (hidden) states influence the observations. However, in our problem

both the latent states and the observations influence each other. In the following

sections, we will describe the Autoregressive Input-Output HMM (AIO-HMM)

for maneuver anticipation [91] and will use it as a baseline to compare our deep

learning approach. Unlike AIO-HMM our deep architecture have internal mem-

ory which allows it to handle long temporal dependencies [83]. Furthermore,

the input features undergo a hierarchy of non-linear transformation through the

deep architecture which allows learning rich representations.

82

Two building blocks of our architecture are Recurrent Neural Networks

(RNNs) [174] and Long Short-Term Memory (LSTM) units [84]. Our work

draws upon ideas from previous works on RNNs and LSTM from the lan-

guage [214], speech [81], and vision [49] communities. Our approach to the

joint training of multiple RNNs is related to the recent work on hierarchical

RNNs [57]. We consider RNNs in multi-modal setting, which is related to the

recent use of RNNs in image-captioning [49]. Our contribution lies in formu-

lating activity anticipation in a deep learning framework using RNNs with

LSTM units. We focus on sensory-rich robotics applications, and our archi-

tecture extends previous works doing sensory-fusion with feed-forward net-

works [166, 212] to the fusion of temporal streams. Using our architecture we

demonstrate state-of-the-art on maneuver anticipation.

4.4 Maneuver anticipation

We first give an overview of the maneuver anticipation problem and then de-

scribe our system.

4.4.1 Problem overview

Our goal is to anticipate driving maneuvers a few seconds before they occur.

This includes anticipating a lane change before the wheels touch the lane mark-

ings or anticipating if the driver keeps straight or makes a turn when approach-

ing an intersection. This is a challenging problem for multiple reasons. First, it

requires the modeling of context from different sources. Information from a sin-

83

t=1

t=5

t=4 t=2

t=3

t=0

Left lane change

Right lane change

Right turn

Trajectories of

facial points

x

y

Figure 4.4: Variable time occurrence of events. Left: The events inside the
vehicle before the maneuvers. We track the driver’s face along
with many facial points. Right: The trajectories generated by
the horizontal motion of facial points (pixels) ‘t’ seconds before
the maneuver. X-axis is the time and Y-axis is the pixels’ hori-
zontal coordinates. Informative cues appear during the shaded
time interval. Such cues occur at variable times before the ma-
neuver, and the order in which the cues appear is also impor-
tant.

gle source, such as a camera capturing events outside the car, is not sufficiently

rich. Additional visual information from within the car can also be used. For

example, the driver’s head movements are useful for anticipation – drivers typ-

ically check for the side traffic while changing lanes and scan the cross traffic at

intersections.

Second, reasoning about maneuvers should take into account the driving

context at both local and global levels. Local context requires modeling events in

vehicle’s vicinity such as the surrounding vision, GPS, and speed information.

On the other hand, factors that influence the overall route contributes to the

global context, such as the driver’s final destination. Third, the informative

84

cues necessary for anticipation appear at variable times before the maneuver,

as illustrated in Figure 4.4. In particular, the time interval between the driver’s

head movement and the occurrence of the maneuver depends on many factors

such as the speed, traffic conditions, etc.

In addition, appropriately fusing the information from multiple sensors is

crucial for anticipation. Simple sensory fusion approaches like concatenation

of feature vectors performs poorly, as we demonstrate through experiments. In

our proposed approach we learn a neural network layer for fusing the temporal

streams of data coming from different sensors. Our resulting architecture is

end-to-end trainable via back propagation, and we jointly train it to: (i) model

the temporal aspects of the problem; (ii) fuse multiple sensory streams; and (iii)

anticipate maneuvers.

4.4.2 System overview

For maneuver anticipation our vehicular sensory platform includes the follow-

ing (as shown in Figure 4.5):

1. A driver-facing camera inside the vehicle. We mount this camera on the

dashboard and use it to track the driver’s head movements. This camera

operates at 25 fps.

2. A camera facing the road is mounted on the dashboard to capture the (out-

side) view in front of the car. This camera operates at 30 fps. The video

from this camera enables additional reasoning on maneuvers. For exam-

ple, when the vehicle is in the left-most lane, the only safe maneuvers are

85

.31

.07

.74

1

Input: Videos, GPS
Speed & Maps

1

0

(a) Setup

Face detection &
Tracking feature points Motion of facial points

(c) Inside and Outside Vehicle Features (d) Model (e) Anticipation(b) Vision Algorithms

Outside context

Feature
vector

Road camera

Face camera

t=0t=5

LSTM
Networks

Fusion
Layer

Softmax

Inside
Features

Outside
Features

Figure 4.5: System Overview. Our system anticipating a left lane change
maneuver. (a) We process multi-modal data including GPS,
speed, street maps, and events inside and outside of the ve-
hicle using video cameras. (b) Vision pipeline extracts visual
cues such as driver’s head movements. (c) The inside and out-
side driving context is processed to extract expressive features.
(d,e) Using our deep learning architecture we fuse the infor-
mation from outside and inside the vehicle and anticipate the
probability of each maneuver.

a right-lane change or keeping straight, unless the vehicle is approaching

an intersection.

3. A speed logger for vehicle dynamics because maneuvers correlate with

the vehicle’s speed, e.g., turns usually happen at lower speeds than lane

changes.

4. A Global Positioning System (GPS) for localizing the vehicle on the map.

This enables us to detect upcoming road artifacts such as intersections,

highway exits, etc.

Using this system we collect 1180 miles of natural city and freeway driv-

ing data from 10 drivers. We denote the information from sensors with feature

vector x. Our vehicular systems gives a temporal sequence of feature vectors

{(x1, x2, ..., xt, ...)}. For now we do not distinguish between the information from

different sensors, later in Section 4.6.2 we introduce sensory fusion. In Sec-

tion 4.7 we formally define our feature representations and describe our data

86

set in Section 4.9.1. We now formally define anticipation and present our deep

learning architecture.

4.5 Preliminaries

We now formally define anticipation and then present our Recurrent Neural

Network architecture. The goal of anticipation is to predict an event several

seconds before it happens given the contextual information up to the present

time. The future event can be one of multiple possibilities. At training time

a set of temporal sequences of observations and events {(x1, x2, ..., xT) j, y j}Nj=1
is

provided where xt is the observation at time t, y is the representation of the event

(described below) that happens at the end of the sequence at t = T , and j is the

sequence index. At test time, however, the algorithm receives an observation xt

at each time step, and its goal is to predict the future event as early as possible,

i.e. by observing only a partial sequence of observations {(x1, ..., xt)|t < T }. This

differentiates anticipation from activity recognition [240, 119] where in the latter

the complete observation sequence is available at test time. In this chapter, xt is

a real-valued feature vector and y = [y1, ..., yK] is a vector of size K (the number

of events), where yk denotes the probability of the temporal sequence belonging

to event the k such that
∑K

k=1 yk
= 1. At the time of training, y takes the form of a

one-hot vector with the entry in y corresponding to the ground truth event as 1

and the rest 0.

In this chapter we propose a deep RNN architecture with Long Short-Term

Memory (LSTM) units [84] for anticipation. Below we give an overview of the

standard RNN and LSTM which form the building blocks of our architecture.

87

4.5.1 Recurrent Neural Networks

A standard RNN [174] takes in a temporal sequence of vectors (x1, x2, ..., xT) as

input, and outputs a sequence of vectors (h1,h2, ...,hT) also known as high-level

representations. The representations are generated by non-linear transforma-

tion of the input sequence from t = 1 to T , as described in the equations below.

ht = f (Wxt +Hht−1 + b) (4.1)

yt = softmax(Wyht + by) (4.2)

where f is a non-linear function applied element-wise, and yt is the softmax

probabilities of the events having seen the observations up to xt. W, H, b, Wy,

by are the parameters that are learned. Matrices are denoted with bold, capital

letters, and vectors are denoted with bold, lower-case letters. In a standard RNN

a common choice for f is tanh or sigmoid. RNNs with this choice of f suffer

from a well-studied problem of vanishing gradients [174], and hence are poor at

capturing long temporal dependencies which are essential for anticipation. A

common remedy to vanishing gradients is to replace tanh non-linearities by

Long Short-Term Memory cells [84]. We now give an overview of LSTM and

then describe our model for anticipation.

4.5.2 Long Short-Term Memory Cells

LSTM is a network of neurons that implements a memory cell [84]. The cen-

tral idea behind LSTM is that the memory cell can maintain its state over time.

When combined with RNN, LSTM units allow the recurrent network to remem-

ber long term context dependencies.

88

Figure 4.6: Internal working of an LSTM unit.

LSTM consists of three gates – input gate i, output gate o, and forget gate f –

and a memory cell c. See Figure 4.6 for an illustration. At each time step t, LSTM

first computes its gates’ activations {it,ft} (4.3)(4.4) and updates its memory cell

from ct−1 to ct (4.5), it then computes the output gate activation ot (4.6), and

finally outputs a hidden representation ht (4.7). The inputs into LSTM are the

observations xt and the hidden representation from the previous time step ht−1.

LSTM applies the following set of update operations:

it = σ(Wixt + Uiht−1 + Vict−1 + bi) (4.3)

ft = σ(W f xt + U f ht−1 + V f ct−1 + b f) (4.4)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc) (4.5)

ot = σ(Woxt + Uoht−1 + Voct + bo) (4.6)

ht = ot ⊙ tanh(ct) (4.7)

where ⊙ is an element-wise product and σ is the logistic function. σ and

tanh are applied element-wise. W∗, V∗, U∗, and b∗ are the parameters, further

the weight matrices V∗ are diagonal. The input and forget gates of LSTM partic-

ipate in updating the memory cell (4.5). More specifically, forget gate controls

the part of memory to forget, and the input gate computes new values based

89

on the current observation that are written to the memory cell. The output gate

together with the memory cell computes the hidden representation (4.7). Since

LSTM cell activation involves summation over time (4.5) and derivatives dis-

tribute over sums, the gradient in LSTM gets propagated over a longer time

before vanishing. In the standard RNN, we replace the non-linear f in equa-

tion (4.1) by the LSTM equations given above in order to capture long temporal

dependencies. We use the following shorthand notation to denote the recurrent

LSTM operation.

(ht, ct) = LSTM(xt,ht−1, ct−1) (4.8)

We now describe our RNN architecture with LSTM units for anticipation.

Following which we will describe a particular instantiation of our architec-

ture for maneuver anticipation where the observations x come from multiple

sources.

4.6 Network architecture for anticipation

In order to anticipate, an algorithm must learn to predict the future given only a

partial temporal context. This makes anticipation challenging and also differen-

tiates it from activity recognition. Previous works treat anticipation as a recogni-

tion problem [121, 163, 192] and train discriminative classifiers (such as SVM or

CRF) on the complete temporal context. However, at test time these classifiers

only observe a partial temporal context and make predictions within a filtering

framework. We model anticipation with a recurrent architecture which unfolds

through time. This lets us train a single classifier that learns to handle partial

temporal context of varying lengths.

90

Furthermore, anticipation in robotics applications is challenging because

the contextual information can come from multiple sensors with different data

modalities. Examples include autonomous vehicles that reason from multiple

sensors [6] or robots that jointly reason over perception and language instruc-

tions [158]. In such applications the way information from different sensors

is fused is critical to the application’s final performance. We therefore build an

end-to-end deep learning architecture which jointly learns to anticipate and fuse

information from different sensors.

4.6.1 RNN with LSTM units for anticipation

At the time of training, we observe the complete temporal observation sequence

and the event {(x1, x2, ..., xT), y}. Our goal is to train a network which predicts the

future event given a partial temporal observation sequence {(x1, x2, ..., xt)|t < T }.

We do so by training an RNN in a sequence-to-sequence prediction manner.

Given training examples {(x1, x2, ..., xT) j, y j}Nj=1
we train an RNN with LSTM

units to map the sequence of observations (x1, x2, ..., xT) to the sequence of

events (y1, ..., yT) such that yt = y,∀t, as shown in Figure 4.2. Trained in this

manner, our RNN will attempt to map all sequences of partial observations

(x1, x2, ..., xt) ∀t ≤ T to the future event y. This way our model explicitly learns

to anticipate. We additionally use LSTM units which prevents the gradients

from vanishing and allows our model to capture long temporal dependencies

in human activities.1

1Driving maneuvers can take up to 6 seconds and the value of T can go up to 150 with a
camera frame rate of 25 fps.

91

LSTM LSTM LSTM

1−�ܠ�ܠ 1+�ܠ
LSTM LSTM LSTM

1−�ܢ�ܢ 1+�ܢ

1−�ܡ �ܡ 1+�ܡ
Fusion

Layer

Softmax

Exponentially

growing loss

Predictions

���� = −∑�− �−� logሺy�� ሻ

Figure 4.7: Sensory fusion RNN for anticipation. (Bottom) In the Fusion-
RNN each sensory stream is passed through their indepen-
dent RNN. (Middle) High-level representations from RNNs
are then combined through a fusion layer. (Top) In order to pre-
vent over-fitting early in time the loss exponentially increases
with time.

4.6.2 Fusion-RNN: Sensory fusion RNN for anticipation

We now present an instantiation of our RNN architecture for fusing two sen-

sory streams: {(x1, ..., xT), (z1, ..., zT)}. In the next section we will describe these

streams for maneuver anticipation.

An obvious way to allow sensory fusion in the RNN is by concatenat-

ing the streams, i.e. using ([x1; z1], ..., [xT ; zT]) as input to the RNN. However,

we found that this sort of simple concatenation performs poorly. We instead

learn a sensory fusion layer which combines the high-level representations of

sensor data. Our proposed architecture first passes the two sensory streams

{(x1, ..., xT), (z1, ..., zT)} independently through separate RNNs (4.9) and (4.10).

The high level representations from both RNNs {(hx
1
, ...,hx

T
), (hz

1
, ...,hz

T
) are then

92

concatenated at each time step t and passed through a fully connected (fusion)

layer which fuses the two representations (4.11), as shown in Figure 4.7. The

output representation from the fusion layer is then passed to the softmax layer

for anticipation (4.12). The following operations are performed from t = 1 to T .

(hx
t , c

x
t) = LSTMx(xt,h

x
t−1, c

x
t−1) (4.9)

(hz
t , c

z
t) = LSTMz(zt,h

z
t−1
, cz

t−1
) (4.10)

Sensory fusion: et = tanh(W f [h
x
t ; hz

t] + b f) (4.11)

yt = softmax(Wyet + by) (4.12)

where W∗ and b∗ are model parameters, and LSTMx and LSTMz process the

sensory streams (x1, ..., xT) and (z1, ..., zT) respectively. The same framework can

be extended to handle more sensory streams.

4.6.3 Exponential loss-layer for anticipation.

We propose a new loss layer which encourages the architecture to anticipate

early while also ensuring that the architecture does not over-fit the training

data early enough in time when there is not enough context for anticipation.

When using the standard softmax loss, the architecture suffers a loss of − log(yk
t)

for the mistakes it makes at each time step, where yk
t is the probability of the

ground truth event k computed by the architecture using Eq. (4.12). We propose

to modify this loss by multiplying it with an exponential term as illustrated in

Figure 4.7. Under this new scheme, the loss exponentially grows with time as

shown below.

loss =

N∑

j=1

T∑

t=1

−e−(T−t) log(yk
t) (4.13)

93

This loss penalizes the RNN exponentially more for the mistakes it makes as

it sees more observations. This encourages the model to fix mistakes as early

as it can in time. The loss in equation 4.13 also penalizes the network less on

mistakes made early in time when there is not enough context available. This

way it acts like a regularizer and reduces the risk to over-fit very early in time.

4.7 Features for anticipation

We extract features by processing the inside and outside driving contexts. We

do this by grouping the overall contextual information from the sensors into: (i)

the context from inside the vehicle, which comes from the driver facing camera

and is represented as temporal sequence of features (z1, ..., zT); and (ii) the con-

text from outside the vehicle, which comes from the remaining sensors: GPS,

road facing camera, and street maps. We represent the outside context with

(x1, ..., xT). In order to anticipate maneuvers, our RNN architecture (Figure 4.7)

processes the temporal context {(x1, ..., xt), (z1, ..., zt)} at every time step t, and

outputs softmax probabilities yt for the following five maneuvers: M = {left

turn, right turn, left lane change, right lane change, straight driving}.

4.7.1 Inside-vehicle features.

The inside features zt capture the driver’s head movements at each time in-

stant t. Our vision pipeline consists of face detection, tracking, and feature

extraction modules. We extract head motion features per-frame, denoted by

φ(face). We compute zt by aggregating φ(face) for every 20 frames, i.e., zt =

94

∑20
i=1 φ(facei)/‖

∑20
i=1 φ(facei)‖.

Face detection and tracking. We detect the driver’s face using a trained Viola-Jones

face detector [238]. From the detected face, we first extract visually discrimina-

tive (facial) points using the Shi-Tomasi corner detector [196] and then track

those facial points using the Kanade-Lucas-Tomasi (KLT) tracker [148, 196, 227].

However, the tracking may accumulate errors over time because of changes in

illumination due to the shadows of trees, traffic, etc. We therefore constrain

the tracked facial points to follow a projective transformation and remove the

incorrectly tracked points using the RANSAC algorithm. While tracking the fa-

cial points, we lose some of the tracked points with every new frame. To address

this problem, we re-initialize the tracker with new discriminative facial points

once the number of tracked points falls below a threshold [106].

Head motion features. For maneuver anticipation the horizontal movement of the

face and its angular rotation (yaw) are particularly important. From the face

tracking we obtain face tracks, which are 2D trajectories of the tracked facial

points in the image plane. Figure 4.8 (bottom) shows how the horizontal coordi-

nates of the tracked facial points vary with time before a left turn maneuver. We

represent the driver’s face movements and rotations with histogram features. In

particular, we take matching facial points between successive frames and create

histograms of their corresponding horizontal motions (in pixels) and angular

motions in the image plane (Figure 4.8). We bin the horizontal and angular mo-

tions using [≤ −2, −2 to 0, 0 to 2, ≥ 2] and [0 to π

2
, π

2
to π, π to 3π

2
, 3π

2
to 2π],

respectively. We also calculate the mean movement of the driver’s face center.

This gives us φ(face) ∈ R
9 facial features per-frame. The driver’s eye-gaze is

also useful a feature. However, robustly estimating 3D eye-gaze in outside en-

95

t=0t=2t=3t=5

0

0.9

T
ra

je
c
to

ri
e
s

A
n
g
u
la

r
m

o
ti
o
n

A
n
g
le

 H
is

to
g
ra

m

Figure 4.8: Inside vehicle feature extraction. The angular histogram fea-
tures extracted at three different time steps for a left turn
maneuver. Bottom: Trajectories for the horizontal motion of
tracked facial pixels ‘t’ seconds before the maneuver. At t=5
seconds before the maneuver the driver is looking straight, at
t=3 looks (left) in the direction of maneuver, and at t=2 looks
(right) in opposite direction for the crossing traffic. Middle:
Average motion vector of tracked facial pixels in polar coordi-
nates. r is the average movement of pixels and arrow indicates
the direction in which the face moves when looking from the
camera. Top: Normalized angular histogram features.

vironment is still a topic of research, and outside the scope of this chapter. We

therefore do not consider eye-gaze features.

3D head pose and facial landmark features. Our framework is flexible and allows

incorporating more advanced face detection and tracking algorithms. For ex-

ample we replace the KLT tracker described above with the Constrained Lo-

cal Neural Field (CLNF) model [9] and track 68 fixed landmark points on the

driver’s face. CLNF is particularly well suited for driving scenarios due its abil-

ity to handle a wide range of head pose and illumination variations. As shown

96

t=5

t=5

t=0

t=0

(a) Features using KLT Tracker 2D Trajectories

(b) Features using CLNF Tracker 2D Trajectories

Figure 4.9: Improved features for maneuver anticipation. We track fa-
cial landmark points using the CLNF tracker [9] which re-
sults in more consistent 2D trajectories as compared to the KLT
tracker [196] used by Jain et al. [91]. Furthermore, the CLNF
also gives an estimate of the driver’s 3D head pose.

in Figure 4.9, CLNF offers us two distinct benefits over the features from KLT (i)

while discriminative facial points may change from situation to situation, track-

ing fixed landmarks results in consistent optical flow trajectories which adds to

robustness; and (ii) CLNF also allows us to estimate the 3D head pose of the

driver’s face by minimizing error in the projection of a generic 3D mesh model

of the face w.r.t. the 2D location of landmarks in the image. The histogram

features generated from the optical flow trajectories along with the 3D head

pose features (yaw, pitch and row), give us φ(face) ∈ R12 when using the CLNF

tracker.

In Section 4.9 we present results with the features from KLT, as well as the

results with richer features obtained from the CLNF model.

97

4.7.2 Outside-vehicle features.

The outside feature vector xt encodes the information about the outside envi-

ronment such as the road conditions, vehicle dynamics, etc. In order to get

this information, we use the road-facing camera together with the vehicle’s GPS

coordinates, its speed, and the street maps. More specifically, we obtain two

binary features from the road-facing camera indicating whether a lane exists

on the left side and on the right side of the vehicle. We also augment the ve-

hicle’s GPS coordinates with the street maps and extract a binary feature indi-

cating if the vehicle is within 15 meters of a road artifact such as intersections,

turns, highway exists, etc. We also encode the average, maximum, and mini-

mum speeds of the vehicle over the last 5 seconds as features. This results in a

xt ∈ R6 dimensional feature vector.

4.8 Bayesian networks for maneuver anticipation

In this section we propose alternate Bayesian networks [91] based on Hidden

Markov Model (HMM) for maneuver anticipation. These models form a strong

baseline to compare our sensory-fusion deep learning architecture.

Driving maneuvers are influenced by multiple interactions involving the ve-

hicle, its driver, outside traffic, and occasionally global factors like the driver’s

destination. These interactions influence the driver’s intention, i.e. their state

of mind before the maneuver, which is not directly observable. In our Bayesian

network formulation, we represent the driver’s intention with discrete states

that are latent (or hidden). In order to anticipate maneuvers, we jointly model

98

x1
h1
z1

xଶ
ℎଶ
zଶ

xଷ

zଷ
ℎଷ ℎ�

z�

x�

�
?

Input
Layer

Hidden
Layer

Output
Layer

Inside features

Outside features

Driver states

Figure 4.10: AIO-HMM. The model has three layers: (i) Input (top): this
layer represents outside vehicle features x; (ii) Hidden (mid-
dle): this layer represents driver’s latent states h; and (iii) Out-
put (bottom): this layer represents inside vehicle features z.
This layer also captures temporal dependencies of inside ve-
hicle features. T represents time.

the driving context and the latent states in a tractable manner. We represent the

driving context as a set of features described in Section 4.7. We now present the

motivation for the Bayesian networks and then discuss our key model Autore-

gressive Input-Output HMM (AIO-HMM).

4.8.1 Modeling driving maneuvers

Modeling maneuvers require temporal modeling of the driving context. Dis-

criminative methods, such as the Support Vector Machine and the Relevance

Vector Machine [226], which do not model the temporal aspect perform poorly

on anticipation tasks, as we show in Section 4.9. Therefore, a temporal model

such as the Hidden Markov Model (HMM) is better suited to model maneuver

anticipation.

An HMM models how the driver’s latent states generate both the inside driv-

ing context (zt) and the outside driving context (xt). However, a more accurate

99

model should capture how events outside the vehicle (i.e. the outside driving

context) affect the driver’s state of mind, which then generates the observations

inside the vehicle (i.e. the inside driving context). Such interactions can be mod-

eled by an Input-Output HMM (IOHMM) [14]. However, modeling the prob-

lem with IOHMM does not capture the temporal dependencies of the inside

driving context. These dependencies are critical to capture the smooth and tem-

porally correlated behaviours such as the driver’s face movements. We there-

fore present Autoregressive Input-Output HMM (AIO-HMM) which extends

IOHMM to model these observation dependencies. Figure 4.10 shows the AIO-

HMM graphical model for modeling maneuvers. We learn separate AIO-HMM

model for each maneuver. In order to anticipate maneuvers, during inference

we determine which model best explains the past several seconds of the driv-

ing context based on the data log-likelihood. In Appendix B.1 we describe the

training and inference procedure for AIO-HMM.

4.9 Evaluation on real world driving data

In this section we first give an overview of our data set and then present

the quantitative results. We also demonstrate our system and algorithm on

real-world driving scenarios. Our video demonstrations are available at:

http://www.brain4cars.com.

100

http://www.brain4cars.com

Figure 4.11: Our data set is diverse in drivers and landscape.

4.9.1 Driving data set

Our data set consists of natural driving videos with both inside and outside

views of the car, its speed, and the global position system (GPS) coordinates.2

The outside car video captures the view of the road ahead. We collected this

driving data set under fully natural settings without any intervention.3 It con-

sists of 1180 miles of freeway and city driving and encloses 21,000 square miles

across two states. We collected this data set from 10 drivers over a period of

two months. The complete data set has a total of 2 million video frames and

includes diverse landscapes. Figure 4.11 shows a few samples from our data

set. We annotated the driving videos with a total of 700 events containing

274 lane changes, 131 turns, and 295 randomly sampled instances of driving

straight. Each lane change or turn annotation marks the start time of the ma-

neuver, i.e., before the car touches the lane or yaws, respectively. For all anno-

2The inside and outside cameras operate at 25 and 30 frames/sec.
3Protocol: We set up cameras, GPS and speed recording device in subject’s personal vehicles

and left it to record the data. The subjects were asked to ignore our setup and drive as they
would normally.

101

tated events, we also annotated the lane information, i.e., the number of lanes

on the road and the current lane of the car. Our data set is publicly available at

http://www.brain4cars.com.

4.9.2 Baseline algorithms

We compare the following algorithms:

• Chance: Uniformly randomly anticipates a maneuver.

• SVM [163]: Support Vector Machine is a discriminative classifier [39].

Morris et al. [163] takes this approach for anticipating maneuvers.4 We

train the SVM on 5 seconds of driving context by concatenating all frame

features to get a R
3840 dimensional feature vector.

• Random-Forest [40]: This is also a discriminative classifier that learns many

decision trees from the training data, and at test time it averages the pre-

diction of the individual decision trees. We train it on the same features as

SVM with 150 trees of depth ten each.

• HMM: This is the Hidden Markov Model. We train the HMM on a tem-

poral sequence of feature vectors that we extract every 0.8 seconds, i.e.,

every 20 video frames. We consider three versions of the HMM: (i) HMM

E: with only outside features from the road camera, the vehicle’s speed,

GPS and street maps (Section 4.7.2); (ii) HMM F: with only inside features

from the driver’s face (Section 4.7.1); and (ii) HMM E+F: with both inside

and outside features.

4Morries et al. [163] considered binary classification problem (lane change vs driving
straight) and used RVM [226].

102

http://www.brain4cars.com

• IOHMM: Jain et al. [91] modeled driving maneuvers with this Bayesian

network. It is trained on the same features as HMM E + F.

• AIO-HMM: Jain et al. [91] proposed this Bayesian network for modeling

maneuvers. It is trained on the same features as HMM E + F.

• Simple-RNN: In this architecture sensor streams are fused by simple con-

catenation and then passed through a single RNN with LSTM units.

• Fusion-RNN-Uniform-Loss (F-RNN-UL): In this architecture sensor streams

are passed through separate RNNs, and the high-level representations

from RNNs are then fused via a fully-connected layer. The loss at each

time step takes the form − log(yk
t).

• Fusion-RNN-Exp-Loss (F-RNN-EL): This architecture is similar to F-RNN-

UL, except that the loss exponentially grows with time −e−(T−t) log(yk
t).

Our RNN and LSTM implementations are open-sourced and available at

NeuralModels [89]. For the RNNs in our Fusion-RNN architecture we use

a single layer LSTM of size 64 with sigmoid gate activations and tanh activation

for hidden representation. Our fully connected fusion layer uses tanh activation

and outputs a 64 dimensional vector. Our overall architecture (F-RNN-EL and

F-RNN-UL) have nearly 25,000 parameters that are learned using RMSprop [44].

4.9.3 Evaluation protocol

We evaluate an algorithm based on its correctness in predicting future maneu-

vers. We anticipate maneuvers every 0.8 seconds where the algorithm processes

the recent context and assigns a probability to each of the four maneuvers: {left

103

Algorithm 3: Maneuver anticipation

Initialize m∗ = driving straight

Input Features {(x1, ..., xT), (z1, ..., zT)} and prediction threshold pth

Output Predicted maneuver m∗

while t = 1 to T do

Observe features (x1, ..., xt) and (z1, ..., zt)

Estimate probability yt of each maneuver inM

m∗t = arg maxm∈M yt

if m∗t , driving straight & yt{m∗t } > pth then

m∗ = m∗t

break

end if

end while

Return m∗

lane change, right lane change, left turn, right turn} and a probability to the event

of driving straight. These five probabilities together sum to one. After anticipa-

tion, i.e. when the algorithm has computed all five probabilities, the algorithm

predicts a maneuver if its probability is above a threshold pth. If none of the

maneuvers’ probabilities are above this threshold, the algorithm does not make

a maneuver prediction and predicts driving straight. However, when it predicts

one of the four maneuvers, it sticks with this prediction and makes no further

predictions for next 5 seconds or until a maneuver occurs, whichever happens

earlier. After 5 seconds or a maneuver has occurred, it returns to anticipating

future maneuvers. Algorithm 3 shows the inference steps for maneuver antici-

pation.

104

During this process of anticipation and prediction, the algorithm makes (i)

true predictions (tp): when it predicts the correct maneuver; (ii) false predictions

(f p): when it predicts a maneuver but the driver performs a different maneuver;

(iii) false positive predictions (f pp): when it predicts a maneuver but the driver

does not perform any maneuver (i.e. driving straight); and (iv) missed predic-

tions (mp): when it predicts driving straight but the driver performs a maneuver.

We evaluate the algorithms using their precision and recall scores:

Pr =
tp

tp + f p + f pp
︸ ︷︷ ︸

Total # of maneuver predictions

; Re =
tp

tp + f p + mp
︸ ︷︷ ︸

Total # of maneuvers

The precision measures the fraction of the predicted maneuvers that are correct

and recall measures the fraction of the maneuvers that are correctly predicted.

For true predictions (tp) we also compute the average time-to-maneuver, where

time-to-maneuver is the interval between the time of algorithm’s prediction and

the start of the maneuver.

We perform cross validation to choose the number of the driver’s latent

states in the AIO-HMM and the threshold on probabilities for maneuver pre-

diction. For SVM we cross-validate for the parameter C and the choice of kernel

from Gaussian and polynomial kernels. The parameters are chosen as the ones

giving the highest F1-score on a validation set. The F1-score is the harmonic

mean of the precision and recall, defined as F1 = 2 ∗ Pr ∗ Re/(Pr + Re).

4.9.4 Quantitative results

We evaluate the algorithms on maneuvers that were not seen during training

and report the results using 5-fold cross validation. Table 4.1 reports the preci-

105

Table 4.1: Maneuver Anticipation Results. Average precision, recall and
time-to-maneuver are computed from 5-fold cross-validation.
Standard error is also shown. Algorithms are compared on the
features from Jain et al. [91].

Lane change Turns All maneuvers

Method Pr (%) Re (%)
Time-to-

Pr (%) Re (%)
Time-to-

Pr (%) Re (%)
Time-to-

maneuver (s) maneuver (s) maneuver (s)

Chance 33.3 33.3 - 33.3 33.3 - 20.0 20.0 -

Morris et al. [163] SVM 73.7 ± 3.4 57.8 ± 2.8 2.40 64.7 ± 6.5 47.2 ± 7.6 2.40 43.7 ± 2.4 37.7 ± 1.8 1.20

Random-Forest 71.2 ± 2.4 53.4 ± 3.2 3.00 68.6 ± 3.5 44.4 ± 3.5 1.20 51.9 ± 1.6 27.7 ± 1.1 1.20

HMM E 75.0 ± 2.2 60.4 ± 5.7 3.46 74.4 ± 0.5 66.6 ± 3.0 4.04 63.9 ± 2.6 60.2 ± 4.2 3.26

HMM F 76.4 ± 1.4 75.2 ± 1.6 3.62 75.6 ± 2.7 60.1 ± 1.7 3.58 64.2 ± 1.5 36.8 ± 1.3 2.61

HMM E + F 80.9 ± 0.9 79.6 ± 1.3 3.61 73.5 ± 2.2 75.3 ± 3.1 4.53 67.8 ± 2.0 67.7 ± 2.5 3.72

IOHMM 81.6 ± 1.0 79.6 ± 1.9 3.98 77.6 ± 3.3 75.9 ± 2.5 4.42 74.2 ± 1.7 71.2 ± 1.6 3.83

(Our final Bayesian network) AIO-HMM 83.8 ± 1.3 79.2 ± 2.9 3.80 80.8 ± 3.4 75.2 ± 2.4 4.16 77.4 ± 2.3 71.2 ± 1.3 3.53

Simple-RNN 85.4 ± 0.7 86.0 ± 1.4 3.53 75.2 ± 1.4 75.3 ± 2.1 3.68 78.0 ± 1.5 71.1 ± 1.0 3.15

F-RNN-UL 92.7 ± 2.1 84.4 ± 2.8 3.46 81.2 ± 3.5 78.6 ± 2.8 3.94 82.2 ± 1.0 75.9 ± 1.5 3.75

(Our final deep architecture) F-RNN-EL 88.2 ± 1.4 86.0 ± 0.7 3.42 83.8 ± 2.1 79.9 ± 3.5 3.78 84.5 ± 1.0 77.1 ± 1.3 3.58

sion and recall scores under three settings: (i) Lane change: when the algorithms

only predict for the left and right lane changes. This setting is relevant for high-

way driving where the prior probabilities of turns are low; (ii) Turns: when the

algorithms only predict for the left and right turns; and (iii) All maneuvers: here

the algorithms jointly predict all four maneuvers. All three settings include the

instances of driving straight.

Table 4.1 compares the performance of the baseline anticipation algorithms,

Bayesian networks, and the variants of our deep learning model. All algorithms

in Table 4.1 use same feature vectors and KLT face tracker which ensures a fair

comparison. As shown in the table, overall the best algorithm for maneuver

anticipation is F-RNN-EL, and the best performing Bayesian network is AIO-

HMM. F-RNN-EL significantly outperforms AIO-HMM in every setting. This

improvement in performance is because RNNs with LSTM units are very ex-

pressive models with an internal memory. This allows them to model the much

needed long temporal dependencies for anticipation. Additionally, unlike AIO-

106

HMM, F-RNN-EL is a discriminative model that does not make any assump-

tions about the generative nature of the problem. The results also highlight the

importance of modeling the temporal nature in the data. Classifiers like SVM

and Random Forest do not model the temporal aspects and hence performs

poorly.

The performance of several variants of our deep architecture, reported in Ta-

ble 4.1, justifies our design decisions to reach the final fusion architecture. When

predicting all maneuvers, F-RNN-EL gives 6% higher precision and recall than

Simple-RNN, which performs a simple fusion by concatenating the two sensor

streams. On the other hand, F-RNN models each sensor stream with a separate

RNN and then uses a fully connected layer to fuse the high-level representations

at each time step. This form of sensory fusion is more principled since the sensor

streams represent different data modalities. In addition, exponentially growing

the loss further improves the performance. Our new loss scheme penalizes the

network proportional to the length of context it has seen. When predicting all

maneuvers, we observe that F-RNN-EL shows an improvement of 2% in preci-

sion and recall over F-RNN-UL. We conjecture that exponentially growing the

loss acts like a regularizer. It reduces the risk of our network over-fitting early

in time when there is not enough context available. Furthermore, the time-to-

maneuver remains comparable for F-RNN with and without exponential loss.

The Bayesian networks AIO-HMM and HMM E + F adopt different sensory

fusion strategies. AIO-HMM fuses the two sensory streams using an input-

output model, on the other hand HMM E + F performs early fusion by concate-

nation. As a result, AIO-HMM gives 10% higher precision than HMM E + F

for jointly predicting all the maneuvers. AIO-HMM further extends IOHMM

107

Table 4.2: False positive prediction (f pp) of different algorithms. The
number inside parenthesis is the standard error.

Algorithm Lane change Turns All

Morris et al. [163] SVM 15.3 (0.8) 13.3 (5.6) 24.0 (3.5)

Random-Forest 16.2 (3.3) 12.9 (3.7) 17.5 (4.0)

HMM E 36.2 (6.6) 33.3 (0.0) 63.8 (9.4)

HMM F 23.1 (2.1) 23.3 (3.1) 11.5 (0.1)

HMM E + F 30.0 (4.8) 21.2 (3.3) 40.7 (4.9)

IOHMM 28.4 (1.5) 25.0 (0.1) 40.0 (1.5)

AIO-HMM 24.6 (1.5) 20.0 (2.0) 30.7 (3.4)

Simple-RNN 16.2 (1.3) 16.7 (0.0) 19.2 (0.0)

F-RNN-UL 19.2 (2.4) 25.0 (2.4) 21.5 (2.1)

F-RNN-EL 10.8 (0.7) 23.3 (1.5) 27.7 (3.8)

by modeling the temporal dependencies of events inside the vehicle. This re-

sults in better performance: on average AIO-HMM precision is 3% higher than

IOHMM, as shown in Table 4.1. Another important aspect of anticipation is

the joint modeling of the inside and outside driving contexts. HMM F learns

only from the inside driving context, while HMM E learns only from the out-

side driving context. The performances of both the models is therefore less than

HMM E + F, which learns jointly both the contexts.

Table 4.2 compares the f pp of different algorithms. False positive predic-

tions (f pp) happen when an algorithm predicts a maneuver but the driver does

not perform any maneuver (i.e. drives straight). Therefore low value of f pp is

preferred. HMM F performs best on this metric at 11% as it mostly assigns a

high probability to driving straight. However, due to this reason, it incorrectly

predicts driving straight even when maneuvers happen. This results in the low

recall of HMM F at 36%, as shown in Table 4.1. AIO-HMM’s f pp is 10% less

than that of IOHMM and HMM E + F, and F-RNN-EL is 3% less than AIO-

108

HMM. The primary reason for false positive predictions is distracted driving.

Drivers interactions with fellow passengers or their looking at the surrounding

scenes are sometimes wrongly interpreted by the algorithms. Understanding

driver distraction is still an open problem, and outside the scope of this chapter.

Table 4.3: 3D head-pose features. In this table we study the effect of better
features with best performing algorithm from Table 4.1 in ‘All
maneuvers’ setting. We use [9] to track 68 facial landmark points
and estimate 3D head-pose.

Method Pr (%) Re (%)
Time-to-

maneuver (s)

F-RNN-EL 84.5 (1.0) 77.1 (1.3) 3.58

F-RNN-EL w/ 3D head-pose 90.5 (1.0) 87.4 (0.5) 3.16

3D head-pose features. The modularity of our approach allows experiment-

ing with more advanced head tracking algorithms. We replace the pipeline for

extracting features from the driver’s face [91] by a Constrained Local Neural

Field (CLNF) model [9]. The new vision pipeline tracks 68 facial landmark

points and estimates the driver’s 3D head pose as described in Section 4.7. As

shown in Table 4.3, we see a significant, 6% increase in precision and 10% in-

crease in recall of F-RNN-EL when using features from our new vision pipeline.

This increase in performance is attributed to the following reasons: (i) robust-

ness of CLNF model to variations in illumination and head pose; (ii) 3D head-

pose features are very informative for understanding the driver’s intention; and

(iii) optical flow trajectories generated by tracking facial landmark points repre-

sent head movements better, as shown in Figure 4.9.

The confusion matrix in Figure 4.12 shows the precision for each maneuver.

F-RNN-EL gives a higher precision than AIO-HMM on every maneuver when

both algorithms are trained on same features (Figure 4.12c). The new vision

109

(a) IOHMM (b) AIO-HMM

(c) F-RNN-EL (d) F-RNN-EL w/ 3D-pose

Figure 4.12: Confusion matrix of different algorithms when jointly pre-
dicting all the maneuvers. Predictions made by algorithms are
represented by rows and actual maneuvers are represented by
columns. Numbers on the diagonal represent precision.

pipeline with CLNF tracker further improves the precision of F-RNN-EL on all

maneuvers (Figure 4.12d).

Effect of prediction threshold. In Figure 4.13 we study how F1-score varies

as we change the prediction threshold pth. We make the following observations:

(i) The F1-score does not undergo large variations with changes to the prediction

threshold. Hence, it allows practitioners to fairly trade-off between the precision

and recall without hurting the F1-score by much; and (ii) the maximum F1-score

attained by F-RNN-EL is 4% more than AIO-HMM when compared on the same

features and 13% more with our new vision pipeline. In Tables 4.1, 4.2 and 4.3,

110

Figure 4.13: Effect of prediction threshold pth. At test time an algorithm
makes a prediction only when it is at least pth confident in its
prediction. This plot shows how F1-score vary with change in
prediction threshold.

we used the threshold values which gave the highest F1-score.

Anticipation complexity. The F-RNN-EL anticipates maneuvers every 0.8 sec-

onds using the previous 5 seconds of the driving context. The complexity

mainly comprises of feature extraction and the model inference in Algorithm 3.

Fortunately both these steps can be performed as a dynamic program by storing

the computation of the most recent anticipation. Therefore, for every anticipa-

tion we only process the incoming 0.8 seconds and not complete 5 seconds of

the driving context. On average we predict a maneuver under 0.20 milliseconds

using Theano [10] on Nvidia K40 GPU on Ubuntu 12.04.

4.10 Conclusion

In this chapter we considered the problem of anticipating driving maneuvers

a few seconds before the driver performs them. This problem requires model-

111

ing of long temporal interactions between a car, its driver, and the surrounding

environment. We proposed a novel deep learning architecture based on Recur-

rent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units for

anticipation. Our architecture learns to fuse multiple sensory streams, and by

training it in a sequence-to-sequence prediction manner, it explicitly learns to

anticipate using only a partial temporal context. We also proposed a novel loss

layer for anticipation which prevents over-fitting.

We release an open-source data set of 1180 miles of natural driving. We

performed an extensive evaluation and showed improvement over many base-

line algorithms. Our sensory fusion deep learning approach gives a precision

of 84.5% and recall of 77.1%, and anticipates maneuvers 3.5 seconds (on av-

erage) before they happen. By incorporating the driver’s 3D head-pose our

precision and recall improves to 90.5% and 87.4% respectively. Potential ap-

plication of our work is enabling advanced driver assistance systems (ADAS) to

alert drivers before they perform a dangerous maneuver, thereby giving drivers

more time to react. We believe that our deep learning architecture is widely

applicable to many activity anticipation problems.

112

CHAPTER 5

DEEP LEARNING ON SPATIO-TEMPORAL GRAPHS

The interactions we discussed in the previous chapters – between human,

robot, and their surrounding – were spanned over both space and time. Such

spatio-temporal interactions are frequently encountered in computer vision and

robotics, for example human-object interaction during an activity. These inter-

actions are commonly represented over spatio-temporal graphs and modeled

using Conditional Random Fields [133] or Bayesian Networks [164]. In this

chapter we propose a novel framework for modeling spatio-temporal interac-

tions using deep architectures.

Deep Recurrent Neural Network architectures, though remarkably capable

at modeling sequences, lack an intuitive high-level spatio-temporal structure.

That is while many problems in robotics inherently have an underlying high-

level structure and can benefit from it. Spatio-temporal graphs are a popular

flexible tool for imposing such high-level intuitions in the formulation of real

world problems. In this chapter, we propose an approach for combining the

power of high-level spatio-temporal graphs and sequence learning success of

Recurrent Neural Networks (RNNs). We develop a scalable method for casting

an arbitrary spatio-temporal graph as a rich RNN mixture that is feedforward,

fully differentiable, and jointly trainable. The proposed method is generic and

principled as it can be used for transforming any spatio-temporal graph through

employing a certain set of well defined steps. We evaluate the proposed ap-

proach on a diverse set of problems, ranging from modeling human motion

to object interactions, maneuver anticipation, and show improvement over the

state-of-the-art with a large margin.

113

t-1 t t+1

C
o

rr
es

p
o
n

d
in

g

S
tr

u
ct

u
ra

l-
R

N
N

S
p
at

io
-t

em
p
o

ra
l

g
ra

p
h
 r

ep
re

se
n

ta
ti

o
n

P
ro

b
le

m

(e
.g

. A
ct

iv
it

y
)

Activity Affordance
RNN

Activity Affordance Activity Affordance

Figure 5.1: From st-graph to S-RNN for an example problem. (Bottom)
Shows an example activity (human microwaving food). Mod-
eling such problems requires both spatial and temporal reason-
ing. (Middle) St-graph capturing spatial and temporal interac-
tions between the human and the objects. (Top) Schematic rep-
resentation of our structural-RNN architecture automatically
derived from st-graph. It captures the structure and interac-
tions of st-graph in a rich yet scalable manner.

5.1 Recurrent neural networks and spatio-temporal graphs

The world we live in is inherently structured. It is comprised of components that

interact with each other in space and time, leading to a spatio-temporal compo-

sition. Utilizing such structures in problem formulation allows domain-experts

to inject their high-level knowledge in learning frameworks. This has been

the incentive for many efforts in computer vision and machine learning, such

as Logic Networks [186], Graphical Models [118], and Structured SVMs [104].

Structures that span over both space and time (spatio-temporal) are of particu-

114

lar interest to computer vision and robotics communities. Primarily, interactions

between humans and environment in real world are inherently spatio-temporal

in nature. For example, during a cooking activity, humans interact with multiple

objects both in space and through time. Similarly, parts of human body (arms,

legs, etc.) have individual functions but work with each other in concert to gen-

erate physically sensible motions. Hence, bringing high-level spatio-temporal

structures and rich sequence modeling capabilities together is of particular im-

portance for many applications.

The notable success of RNNs has proven their capability on many end-to-

end learning tasks [76, 67, 49, 253]. However, they lack a high-level and in-

tuitive spatio-temporal structure though they have been shown to be success-

ful at modeling long-linear sequences [207, 156, 214]. Therefore, augmenting

a high-level structure with learning capability of RNNs leads to a powerful

tool that has the best of both worlds. Spatio-temporal graphs (st-graphs) are

a popular [144, 142, 26, 52, 122, 252, 91] general tool for representing such high-

level spatio-temporal structures. The nodes of the graph typically represent

the problem components, and the edges capture their spatio-temporal interac-

tions. To achieve the above goal, we develop a generic tool for transforming

an arbitrary st-graph into a feedforward mixture of RNNs, named structural-

RNN (S-RNN). Figure 5.1 schematically illustrates this process, where a sample

spatio-temporal problem is shown at the bottom, the corresponding st-graph

representation is shown in the middle, and our RNN mixture counterpart of the

st-graph is shown at the top.

In high-level steps, given an arbitrary st-graph, we first roll it out in time

and decompose it into a set of contributing factor components. The factors iden-

115

tify the independent components that collectively determine one decision and

are derived from both edges and nodes of the st-graph. We then semantically

group the factor components and represent each group using one RNN, which

results in the desired RNN mixture. The main challenges of this transformation

problem are: 1) making the RNN mixture as rich as possible to enable learning

complex functions, yet 2) keeping the RNN mixture scalable with respect to size

of the input st-graph. In order to make the resulting RNN mixture rich, we lib-

erally represent each spatio-temporal factor (including node factors, temporal

edge factors, and spatio-temporal edge factors) using one RNN. On the other

hand, to keep the overall mixture scalable but not lose the essential learning

capacity, we utilize “factor sharing” (aka clique templates [217, 154, 215]) and

allow the factors with similar semantic functions to share an RNN. This results

in a rich and scalable feedforward mixture of RNNs that is equivalent to the

provided st-graph in terms of input, output, and spatio-temporal relationships.

The mixture is also fully differentiable, and therefore, can be trained jointly as

one entity.

The proposed method is principled and generic as the transformation is

based on a set of well defined steps and it is applicable to any problem

that can be formulated as st-graphs (as defined in Section 5.3). Several pre-

vious works have attempted solving specific problems using a collection of

RNNs [207, 57, 236, 49, 27], but they are almost unanimously task-specific. They

also do not utilize mechanisms similar to factorization or factor sharing in de-

vising their architecture to ensure richness and scalability.

Our approach allows domain-experts to cast their problems as st-graphs and

learn deep recurrent structures over them. S-RNN is also modular, as it is en-

116

joying an underlying high-level structure. This enables easy high-level manip-

ulations which are basically not possible in unstructured (plain-vanilla) RNNs

(e.g., we will experimentally show forming a feasible hybrid human motion by

mixing parts of different motion styles - Sec 5.4.2). We evaluate the proposed

approach on a diverse set of spatio-temporal problems (human pose modeling

and forecasting, human-object interaction, and driver decision making), and

show significant improvements over the state of the art on each problem. We

also study complexity and convergence properties of S-RNN and provide fur-

ther experimental insights by visualizing its memory cells that reveals some

cells interestingly represent certain semantic operations. The code of the en-

tire framework that accepts a st-graph as the input and yields the output RNN

mixture is available at the http://asheshjain.org/srnn

The chapter contributes: 1) a generic method for casting an arbitrary st-

graph as a rich, scalable, and jointly trainable RNN mixture, 2) in defence of

structured approaches, we show S-RNN significantly outperforms its unstruc-

tured (plain-vanilla) RNN counterparts, 3) in defence of RNNs, we show on

several diverse spatio-temporal problems that modeling structure with S-RNN

outperforms the non-deep learning based structured counterparts.

5.2 Related deep architectures

We give a categorized overview of the related literature. In general, three main

characteristics differentiate our work from existing techniques: being generic

and not restricted to a specific problem, providing a principled method for

transforming a st-graph into a scalable rich feedforward RNN mixture, and be-

117

http://asheshjain.org/srnn

ing jointly trainable.

Spatio-temporal problems. Problems that require spatial and temporal reason-

ing are very common in robotics and computer vision. Examples include human

activity recognition and segmentation from videos [211, 197, 240, 234, 33, 98,

142, 135], context-rich human-object interactions [144, 123, 119, 79], modeling

human motion [67, 221, 220] etc. Spatio-temporal reasoning also finds appli-

cation in assistive cars, driver understanding, and multi-sensor object recogni-

tion [252, 91, 176, 52]. In fact most of our daily activities are spatio-temporal in

nature. With growing interests in rich interactions and robotics, this form of rea-

soning will become even more important. We evaluate our generic method on

three context-rich spatio-temporal problems: (i) Human motion modeling [67];

(ii) Human-object interaction understanding [123]; and (iii) Driver maneuver

anticipation [91].

Mixtures of deep architectures. Several previous works build multiple net-

works and wire them together in order to capture some complex structure (or

interactions) in the problem with promising results on applications such as ac-

tivity detection, scene labeling, image captioning, and object detection [57, 27,

35, 72, 207, 236]. However, such architectures are mostly hand designed for spe-

cific problems, though they demonstrate the benefit in using a modular deep

architecture. Recursive Neural Networks [73] are, on the other hand, generic

feedforward architectures, but for problems with recursive structure such as

parsing of natural sentences and scenes [205]. Our work is a remedy for prob-

lems expressed as spatio-temporal graphs. For a new spatio-temporal problem

in hand, all a practitioner needs to do is to express their intuition about the

problem as an st-graph.

118

Deep learning with graphical models. Many works have addressed deep net-

works with graphical models for structured prediction tasks. Bengio et al. [15]

combined CNNs with HMM for hand writing recognition. Tompson et al. [228]

jointly train CNN and MRF for human pose estimation. Chen et al. [32] use

a similar approach for image classification with general MRF. Recently sev-

eral works have addressed end-to-end image segmentation with fully con-

nected CRF [253, 147, 69, 146]. Several works follow a two-stage approach

and decouple the deep network from CRF. They have been applied to multiple

problems including image segmentation, pose estimation, document process-

ing [251, 31, 143, 25] etc. All of these works advocate and well demonstrate the

benefit in exploiting the structure in the problem together with rich deep archi-

tectures. However, they largely do not address spatio-temporal problems and

the proposed architectures are task-specific.

Conditional Random Fields (CRF) model dependencies between the outputs

by learning a joint distribution over them. They have been applied to many

applications [127, 62, 177] including st-graphs which are commonly modeled as

spatio-temporal CRF [144, 123, 252, 52]. In our approach, we adopt st-graphs as

a general graph representation and embody it using an RNN mixture architec-

ture. Unlike CRF, our approach is not probabilistic and is not meant to model

the joint distribution over the outputs. S-RNN instead learns the dependencies

between the outputs via structural sharing of RNNs between the outputs.

119

Human

Object

Object

�
� � Unroll

Human

Object

Object

� � + 1

x�,��
x��� ∈ E� �

� �
�

� �
x�,��+1 Factor

graph

(a) Spatio-temporal graph representing an activity (b) Unrolled through time (c) Factor graph parameterization

x�,��
x�,��

x�,��+1
x�,��+1

x��
x��

E�
E�

G = (V,E�,E�)
Spatio-temporal edge

Temporal edge

�
�
�

�

� � + 1
Ψ�
Ψ�

Ψ�,�
Ψ�,�Ψ�
Ψ�,� Ψ�,�

�
�

Ψ�,�
Ψ�,�

Human

Object

Object

Node factor

Spatio-temporal

Edge factor

Temporal

Edge factor

Figure 5.2: An example spatio-temporal graph (st-graph) of a human ac-
tivity. (a) st-graph capturing human-object interaction. (b) Un-
rolling the st-graph through edges ET . The nodes and edges
are labelled with the feature vectors associated with them. (c)
Our factor graph parameterization of the st-graph. Each node
and edge in the st-graph has a corresponding factor.

5.3 Structural-RNN architectures

In this section we describe our approach for building structural-RNN (S-RNN)

architectures. We start with a st-graph, decompose it into a set of factor compo-

nents, then represent each factor using a RNN. The RNNs are interconnected in

a way that the resulting architecture captures the structure and interactions of

the st-graph.

5.3.1 Representation of spatio-temporal graphs

Many applications that require spatial and temporal reasoning are modeled us-

ing st-graphs [26, 52, 123, 252, 91]. We represent a st-graph with G = (V,ES ,ET),

whose structure (V,ES) unrolls over time through edges ET . Figure 5.2a shows

an example st-graph capturing human-object interactions during an activity.

Figure 5.2b shows the same st-graph unrolled over time. Note that the nodes

v ∈ V and edges e ∈ ES ∪ ET of the st-graph are temporal in nature. At

120

each time step t, the nodes are connected with undirected spatio-temporal edge

e = (u, v) ∈ ES . The node u at time t and the node v at time t + 1 are connected

with an undirected temporal edge iff (u, v) ∈ ET .1

Given a st-graph and the feature vectors associated with the nodes xt
v and

edges xt
e, as shown in Figure 5.2b, the goal is to predict the node labels (or real

value vectors) yt
v at each time step t. For instance, in human-object interaction,

the node features can represent the human and object poses, and edge features

can their relative orientation; the node labels represent the human activity and

object affordance. Label yt
v is affected by both its node and its interactions with

other nodes (edges), leading to an overall complex system. Such interactions are

commonly parameterized with a factor graph that conveys how a (complicated)

function over the st-graph factorizes into simpler functions [129]. We derive our

S-RNN architecture from the factor graph representation of the st-graph. Our

factor graph representation has a factor function Ψv(yv, xv) for each node and a

pairwise factorΨe(ye(1), ye(2), xe) for each edge. Figure 5.2c shows the factor graph

corresponding to the st-graph in 5.2a. 2

Sharing factors between nodes. Each factor in the st-graph has parameters

that needs to be learned. Instead of learning a distinct factor for each node,

semantically similar nodes can optionally share factors. For example, all “ob-

ject nodes” {u,w} in the st-graph can share the same node factor and parame-

ters. This modeling choice allows enforcing parameter sharing between similar

nodes. It further gives the flexibility to handle st-graphs with more nodes with-

1For simplicity, the example st-graph in Figure 5.2a considers temporal edges of the form
(v, v) ∈ ET .

2Note that we adopted factor graph as a tool for capturing interactions and not modeling
the overall function. Factor graphs are commonly used in probabilistic graphical models for
factorizing joint probability distributions. We consider them for general st-graphs and do not
establish relations to its probabilistic and function decomposition properties.

121

out increasing the number of parameters. For this purpose, we partition the

nodes as CV = {V1, ..,VP} where Vp is a set of semantically similar nodes, and

they all use the same node factor ΨVp
. In Figure 5.3a we re-draw the st-graph

and assign same color to the nodes sharing node factors.

Partitioning nodes on their semantic meanings leads to a natural semantic

partition of the edges, CE = {E1, .., EM}, where Em is a set of edges whose nodes

form a semantic pair. Therefore, all edges in the set Em share the same edge

factor ΨEm
. For example all “human-object edges” {(v, u), (v,w)} are modeled

with the same edge factor. Sharing factors based on semantic meaning makes

the overall parametrization compact. In fact, sharing parameters is necessary

to address applications where the number of nodes depends on the context.

For example, in human-object interaction the number of object nodes vary with

the environment. Therefore, without sharing parameters between the object

nodes, the model cannot generalize to new environments with more objects.

For modeling flexibility, the edge factors are not shared across the edges in ES

and ET . Hence, in Figure 5.3a, object-object (w,w) ∈ ET temporal edge is colored

differently from object-object (u,w) ∈ ES spatio-temporal edge.

In order to predict the label of node v ∈ Vp, we consider its node factor ΨVp
,

and the edge factors connected to v in the factor graph. We define a node factor

and an edge factor as neighbors if they jointly affect the label of some node in the

st-graph. More formally, the node factor ΨVp
and edge factor ΨEm

are neighbors,

if there exist a node v ∈ Vp such that it connects to both ΨVp
and ΨEm

in the factor

graph. We will use this definition in building S-RNN architecture such that it

captures the interactions in the st-graph.

122

�2�1 �1�2�3�4
��1��2��3��4

H-O

O-O

H-H

O-O

��1
��2Human

Object

x�,� + x�,�
x�,�

x�,�

x�,�
x�,���

��
(b) Corresponding S-RNN (c) Forward-pass for human node � (d) Forward-pass for object node �nodeRNNsedgeRNNs(a) Spatio-temporal graph with colors

indicating sharing of factors

��1��2��3��4
��1
��2Human

Object

��1��2��3��4
��1
��2Human

Object

Human

(H)

Object

(O)Object (O)

�
� �

RNN

��=��=

Figure 5.3: An example of st-graph to S-RNN. (a) The st-graph from Fig-
ure 5.2 is redrawn with colors to indicate sharing of nodes and
edge factors. Nodes and edges with same color share factors.
Overall there are six distinct factors: 2 node factors and 4 edge
factors. (b) S-RNN architecture has one RNN for each fac-
tor. EdgeRNNs and nodeRNNs are connected to form a bipar-
tite graph. Parameter sharing between the human and object
nodes happen through edgeRNN RE1

. (c) The forward-pass for
human node v involve RNNs RE1

, RE3
and RV1

. In Figure 5.4 we
show the detailed layout of this forward-pass. Input features
into RE1

is sum of human-object edge features xu,v+xv,w. (d) The
forward-pass for object node w involve RNNs RE1

, RE2
, RE4

and
RV2

. In this forward-pass, the edgeRNN RE1
only processes the

edge feature xv,w. (Best viewed in color)

5.3.2 Structural-RNN from spatio-temporal graphs

We derive our S-RNN architecture from the factor graph representation of the st-

graph. The factors in the st-graph operate in a temporal manner, where at each

time step the factors observe (node & edge) features and perform some com-

putation on those features. In S-RNN, we represent each factor with an RNN.

We refer the RNNs obtained from the node factors as nodeRNNs and the RNNs

obtained from the edge factors as edgeRNNs. The interactions represented by

the st-graph are captured through connections between the nodeRNNs and the

edgeRNNs.

We denote the RNNs corresponding to the node factor ΨVp
and the edge

factor ΨEm
as RVp

and REm
respectively. In order to obtain a feedforward net-

123

Algorithm 4: From spatio-temporal graph to S-RNN

Input G = (V,ES ,ET), CV = {V1, ...,VP}

Output S-RNN graph GR = ({REm
}, {RVp

},ER)

1: Semantically partition edges CE = {E1, ..., EM}

2: Find factor components {ΨVp
,ΨEm

} of G

3: Represent each ΨVp
with a nodeRNN RVp

4: Represent each ΨEm
with an edgeRNN REm

5: Connect {REm
} and {RVp

} to form a bipartite graph.

(REm
,RVp

) ∈ ER iff ∃v ∈ Vp, u ∈ V s.t. (u, v) ∈ Em

Return GR = ({REm
}, {RVp

},ER)

work, we connect the edgeRNNs and nodeRNNs to form a bipartite graph

GR = ({REm
}, {RVp

},ER). In particular, the edgeRNN REm
is connected to the

nodeRNN RVp
iff the factors ΨEm

and ΨVp
are neighbors in the st-graph, i.e. they

jointly affect the label of some node in the st-graph. To summarize, in Algo-

rithm 4 we show the steps for constructing S-RNN architecture. Figure 5.3b

shows the S-RNN for the human activity represented in Figure 5.3a. The

nodeRNNs combine the outputs of the edgeRNNs they are connected to (i.e.

its neighbors in the factor graph), and predict the node labels. The predictions

of nodeRNNs (eg. RV1
and RV2

) interact through the edgeRNNs (eg. RE1
). Each

edgeRNN handles a specific semantic interaction between the nodes connected

in the st-grap and models how the interactions evolve over time. In the next

section, we explain the inputs, outputs, and the training procedure of S-RNN.

124

Human�
� �

�
� �

+

x��
x��

x�,��

� � + 1���� →

Sum

Features

Concatenate

Features

��� ���+1
H nodeRNN

H-O edgeRNN

H-H edgeRNN

Human activity label

x�,��
x�,��

x�,��+1
x��

Object
Object

[] []

+

��1 ��1
��1 ��1

��3 ��3

Figure 5.4: Forward-pass for human node v. Shows the architecture lay-
out corresponding to the Figure 5.3c on unrolled st-graph.
(View in color)

5.3.3 Training structural-RNN architecture

In order to train the S-RNN architecture, for each node of the st-graph the fea-

tures associated with the node are fed into the architecture. In the forward-pass

for node v ∈ Vp, the input into edgeRNN REm
is the temporal sequence of edge

features xt
e on the edge e ∈ Em, where edge e is incident to node v in the st-

graph. The nodeRNN RVp
at each time step concatenates the node feature xt

v

and the outputs of edgeRNNs it is connected to, and predicts the node label. At

the time of training, the errors in prediction are back-propagated through the

nodeRNN and edgeRNNs involved during the forward-pass. That way, S-RNN

non-linearly combines the node and edge features associated with the nodes in

order to predict the node labels.

125

Figure 5.3c shows the forward-pass through S-RNN for the human node.

Figure 5.4 shows a detailed architecture layout of the same forward-pass.

The forward-pass involves the edgeRNNs RE1
(human-object edge) and RE3

(human-human edge). Since the human node v interacts with two object nodes

{u,w}, we pass the summation of the two edge features as input to RE1
. The sum-

mation of features, as opposed to concatenation, is important to handle variable

number of object nodes with a fixed architecture. Since the object count varies

with environment, it is challenging to represent variable context with a fixed

length feature vector. Empirically, adding features works better than mean pool-

ing. We conjecture that addition retains the object count and the structure of the

st-graph, while mean pooling averages out the number of edges. The nodeRNN

RV1
concatenates the (human) node features with the outputs from edgeRNNs,

and predicts the activity at each time step.

Parameter sharing and structured feature space. An important aspect of

S-RNN is sharing of parameters across the node labels. Parameter sharing be-

tween node labels happen when an RNN is common in their forward-pass. For

example in Figure 5.3c and 5.3d, the edgeRNN RE1
is common in the forward-

pass for the human node and the object nodes. Furthermore, the parameters of

RE1
gets updated through back-propagated gradients from both the object and

human nodeRNNs. In this way, RE1
affects both the human and object node

labels.

Since the human node is connected to multiple object nodes, the input into

edgeRNN RE1
is always a linear combination of human-object edge features.

This imposes an structure on the features processed by RE1
. More formally, the

input into RE1
is the inner product sT F, where F is the feature matrix storing

126

Human

Object

Object

Object

Spine

Right armLeft arm

Right legLeft leg

Driver

Outside
context

Inside
context

(a) Human motion modeling (b) Activity detection and anticipation (c) Maneuver anticipation

Figure 5.5: Diverse spatio-temporal tasks. We apply S-RNN to the follow-
ing three diverse spatio-temporal problems. (View in color)

the edge features xe s.t. e ∈ E1. Vector s captures the structured feature space.

Its entries are in {0,1} depending on the node being forward-passed. In the

example above F = [xv,u xv,w]T . For the human node v, s = [1 1]T , while for the

object node u, s = [1 0]T .

5.4 Applications of Structural-RNN

We present results on three diverse spatio-temporal problems to ensure generic

applicability of S-RNN, shown in Figure 5.5. The applications include: (i) mod-

eling human motion [67] from motion capture data [86]; (ii) human activity de-

tection and anticipation [119, 121]; and (iii) maneuver anticipation from real-

world driving data [91].

127

5.4.1 Human motion modeling and forecasting

Human body is a good example of separate but well related components. Its

motion involves complex spatio-temporal interactions between the components

(arms, legs, spine), resulting in sensible motion styles like walking, eating etc.

In this experiment, we represent the complex motion of humans over st-graphs

and learn to model them with S-RNN. We show that our structured approach

outperforms the state-of-the-art unstructured deep architecture [67] on motion

forecasting from motion capture (mocap) data. Several approaches based on

Gaussian processes [232, 241], Restricted Boltzmann Machines (RBMs) [221, 220,

213], and RNNs [67] have been proposed to model human motion. Recently,

Fragkiadaki et al. [67] proposed an encoder-RNN-decoder (ERD) which gets

state-of-the-art forecasting results on H3.6m mocap data set [86].

S-RNN architecture for human motion. Our S-RNN architecture follows the st-

graph shown in Figure 5.5a. According to the st-graph, the spine interacts with

all the body parts, and the arms and legs interact with each other. The st-graph

is automatically transformed to S-RNN following Section 5.3.2. The resulting S-

RNN have three nodeRNNs, one for each type of body part (spine, arm, and

leg), four edgeRNNs for modeling the spatio-temporal interactions between

them, and three edgeRNNs for their temporal connections. For edgeRNNs

and nodeRNNs we use FC(256)-FC(256)-LSTM(512) and LSTM(512)-FC(256)-

FC(100)-FC(·) architectures, respectively, with skip input and output connec-

tions [75]. The outputs of nodeRNNs are skeleton joints of different body parts,

which are concatenated to reconstruct the complete skeleton. In order to model

human motion, we train S-RNN to predict the mocap frame at time t + 1 given

the frame at time t. Similar to [67], we gradually add noise to the mocap frames

128

during training. This simulates curriculum learning [16] and helps in keeping

the forecasted motion close to the manifold of human motion. As node features

we use the raw joint values expressed as exponential map [67], and edge fea-

tures are concatenation of the node features. We train all RNNs jointly to min-

imize the Euclidean loss between the predicted mocap frame and the ground

truth. We closely follow the training procedure by Fragkiadaki et al. [67]. We

cross-validate over the hyperparameters on the validation set and set them to

the following values:

• Back propagation through 100 time steps.

• Each mini-batch have 100 sequences.

• We use SGD and start with the step-size of 10−3. We decay the step-size by

0.1 when the training error plateaus.

• We clip the L2-norm of gradient to 25.0, and clip each dimension to [-5.0,

5.0]

• We gradually add Gaussian noise to the training data following the sched-

ule: at iterations {250, 500, 1000, 1300, 2000, 2500, 3300} we add noise with

standard deviation {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7}. As also noted by

Fragkiadaki et al. [67], adding noise is very important during training in

order to forecast motions that lie on the manifold of human-like motions.

Evaluation setup. We compare S-RNN with the state-of-the-art ERD architec-

ture [67] on H3.6m mocap data set [86]. We also compare with a 3 layer LSTM

architecture (LSTM-3LR) which [67] use as a baseline.3 For motion forecasting

we follow the experimental setup of [67]. We downsample H3.6m by two and

3We reproduce ERD and LSTM-3LR architectures following [67]. The authors implementa-
tion were not available at the time of submission.

129

train on 6 subjects and test on subject S5. To forecast, we first feed the archi-

tectures with (50) seed mocap frames, and then forecast the future (100) frames.

Following [67], we consider walking, eating, and smoking activities. In addition

to these three, we also consider discussion activity.

Forecasting is specially challenging on activities with complex aperiodic hu-

man motion. In H3.6m data set, significant parts of eating, smoking, and dis-

cussion activities are aperiodic, while walking activity is mostly periodic. Our

evaluation demonstrates the benefits of having an underlying structure in three

important ways: (i) We present visualizations and quantitative results on com-

plex aperiodic activities ([67] evaluates only on periodic walking motion); (ii)

We forecast human motion for almost twice longer than state-of-the-art [67].

This is very challenging for aperiodic activities; and finally (iii) We show S-RNN

interestingly learns semantic concepts, and demonstrate its modularity by gen-

erating hybrid human motion. Unstructured deep architectures like [67] does

not offer such modularity.

Qualitative results on motion forecasting. Figure 5.6 shows forecasting 1000ms

of human motion on “eating” activity – the subject drinks while walking. S-

RNN stays close to the ground-truth in the short-term and generates human

like motion in the long-term. On removing edgeRNNs, the parts of human body

become independent and stops interacting through parameters. Hence without

edgeRNNs the skeleton freezes to some mean position. LSTM-3LR suffers with

a drifting problem. On many test examples it drifts to the mean position of

walking human ([67] made similar observations about LSTM-3LR). The motion

generated by ERD [67] stays human-like in the short-term but it drifts away to

non-human like motion in the long-term. This was a common outcome of ERD

130

Ground Truth LSTM-3LR ERD w/o edgeRNNS-RNN

1
0

0
m

s
2

0
0

m
s

3
0

0
m

s
5

0
0

m
s

1
0

0
0

m
s

S
ee

d
 M

o
ti

o
n

S
h

o
rt-term

 fo
recast

L
o

n
g

-term
 fo

recast

Figure 5.6: Forecasting eating activity on test subject. On aperiodic activ-
ities, ERD and LSTM-3LR struggle to model human motion. S-
RNN, on the other hand, mimics the ground truth in the short-
term and generates human like motion in the long term. With-
out (w/o) edgeRNNs the motion freezes to some mean stand-
ing position. See Video: http://asheshjain.org/srnn

on complex aperiodic activities, unlike S-RNN. Furthermore, ERD produced

human motion was non-smooth on many test examples. See video for more

examples: http://asheshjain.org/srnn

Quantitative evaluation. We follow the evaluation metric of Fragkiadaki et

al. [67] and present the 3D angle error between the forecasted mocap frame and

131

http://asheshjain.org/srnn
http://asheshjain.org/srnn

Table 5.1: Motion forecasting angle error. {80, 160, 320, 560, 1000} msecs
after the seed motion. The results are averaged over 8 seed mo-
tion sequences for each activity on the test subject.

Methods
Short-term forecast Long-term forecast

80ms 160ms 320ms 560ms 1000ms

Walking activity

ERD [67] 1.30 1.56 1.84 2.00 2.38

LSTM-3LR 1.18 1.50 1.67 1.81 2.20

S-RNN 1.08 1.34 1.60 1.90 2.13

Eating activity

ERD [67] 1.66 1.93 2.28 2.36 2.41

LSTM-3LR 1.36 1.79 2.29 2.49 2.82

S-RNN 1.35 1.71 2.12 2.28 2.58

Smoking activity

ERD [67] 2.34 2.74 3.73 3.68 3.82

LSTM-3LR 2.05 2.34 3.10 3.24 3.42

S-RNN 1.90 2.30 2.90 3.21 3.23

Discussion activity

ERD [67] 2.67 2.97 3.23 3.47 2.92

LSTM-3LR 2.25 2.33 2.45 2.48 2.93

S-RNN 1.67 2.03 2.20 2.39 2.43

the ground truth in Table 5.1. Qualitatively, ERD models human motion better

than LSTM-3LR. However, in the short-term, it does not mimic the ground-truth

as well as LSTM-3LR. Fragkiadaki et al. [67] also note this trade-off between

ERD and LSTM-3LR. On the other hand, S-RNN outperforms both LSTM-3LR

and ERD on short-term motion forecasting on all activities. Therefore S-RNN

gives us the best of both worlds. It mimics the ground truth in the short-term

132

and generates human like motion in the long term. Due to stochasticity in

human motion, long-term forecasts (> 500ms) can significantly differ from the

ground truth but still depict human-like motion. For this reason, the long-term

forecast numbers in Table 5.1 are not a fair representative of algorithms model-

ing capabilities. We also observe that discussion is one of the most challenging

aperiodic activity for all algorithms.

User study. We randomly sampled three seed motions from each of the four

activities (walking, eating, smoking, and discussion), giving a total of 12 seed

motions. We forecasted human motion from the seeds using S-RNN, LSTM-3LR

and ERD, resulting in total of 36 forecasted motions – equally divided across

algorithms and activities. We asked five users to rate the forecasted motions on

a Likert scale of 1 – 3, where a score of 1 is bad, 2 is neutral, and 3 is good. The

users were instructed to rate based on how human like the forecasted motion

appeared. In order to calibrate, the users were first shown many examples of

ground truth motion capture videos.

Figure 5.7 shows the number of examples that obtained bad, neutral, and

good scores for each algorithm. Majority of the motions generated by S-RNN

were of high-quality and resembled human like motion. On the other hand,

LSTM-3LR generated reasonable motions most of the times, however they were

not as good as the ground truth. Finally, the motions forecasted by ERD were

not human like for most of the aperiodic activities (eating, smoking, and discus-

sion). On the walking activity, all algorithms were competitive and users mostly

gave a score of 3 (good). Hence, through the user study we validate that S-RNN

generates most realistic human motions majority of the times.

To summarize, unstructured approaches like LSTM-3LR and ERD struggles to

133

bad neutral good0

5

10

15

20

25

30

35

40

45

#
 o

f t
es

t e
xa

m
pl

es

User Study
ERD
LSTM-3LR
S-RNN

Figure 5.7: User study with five users. Each user was shown 36 forecasted
motions equally divided across four activities (walking, eat-
ing, smoking, discussion) and three algorithms (S-RNN, ERD,
LSTM-3LR). The plot shows the number of bad, neutral, and
good motions forecasted by each algorithm.

model long-term human motion on complex activities. S-RNN’s good perfor-

mance is attributed to its structural modeling of human motion through the un-

derlying st-graph. S-RNN models each body part separately with nodeRNNs

and captures interactions between them with edgeRNNs in order to produce

coherent motions.

5.4.2 Going deeper into structural-RNN

We now present several insights into S-RNN architecture and demonstrate the

modularity of the architecture which enables it to generate hybrid human mo-

tions.

Visualization of memory cells. We investigated if S-RNN memory cells repre-

134

(A) Cell #496 fires in response to “moving the leg forward”

Left leg
forward

Right leg
forward

Left leg cell activations

T
im

e

Cells

Eating with
right arm

Two puffs
of smoke

with left arm

T
im

e

(B) Cell #419 fires in response to
“moving arm close to the face”

One quick
puff of smoke
with right arm

Figure 5.8: S-RNN memory cell visualization. (Left) A cell of the leg
nodeRNN fires (red) when “putting the leg forward”. (Right)
A cell of the arm nodeRNN fires for “moving the hand close to
the face”. We visualize the same cell for eating and smoking
activities. (See video)

sent meaningful semantic sub-motions. Semantic cells were earlier studied on

other problems [109], we are the first to present it for human motion. In Fig-

ure 5.8 (left) we show a cell in the leg nodeRNN learns the semantic motion of

moving the leg forward. The cell fires positive (red color) on the forward move-

ment of the leg and negative (blue color) on its backward movement. As the

subject walks, the cell alternatively fires for the right and the left leg. Longer

activations in the right leg corresponds to the longer steps taken by the subject

with the right leg. Similarly, a cell in the arm nodeRNN learns the concept of

moving hand close to the face, as shown in Figure 5.8 (right). The same cell fires

whenever the subject moves the hand closer to the face during eating or smok-

ing. The cell remains active as long as the hand stays close to the face.

Generating hybrid human motion. We now demonstrate the flexibility of our

modular architecture by generating novel yet meaningful motions which are

135

Figure 5.9: Generating hybrid motions. We demonstrate flexibility of S-
RNN by generating a hybrid motion of a “human jumping for-
ward on one leg”. See video: http://asheshjain.org/

srnn

not in the data set. Such modularity is of interest and has been explored to

generate diverse motion styles [219]. As a result of having an underlying high-

level structure, our approach allows us to exchange RNNs between the S-RNN

architectures trained on different motion styles. We leverage this to create a

novel S-RNN architecture which generates a hybrid motion of a human jumping

forward on one leg, as shown in Figure 5.9. For this experiment we modeled the

left and right leg with different nodeRNNs. We trained two independent S-

RNN models – a slower human and a faster human (by down sampling data) –

and swapped the left leg nodeRNN of the trained models. The resulting faster

human, with a slower left leg, jumps forward on the left leg to keep up with its

twice faster right leg.4 Unstructured architectures like ERD [67] does not offer

this kind of flexibility.

Visualization of train and test errors. Figure 5.10 examines the test and train

error with iterations. Both S-RNN and ERD converge to similar training error,

however S-RNN generalizes better with a smaller test error for next step pre-

diction. The number of parameters in S-RNN are marginally more than ERD.

4Imagine your motion forward if someone holds your right leg and run!

136

http://asheshjain.org/srnn
http://asheshjain.org/srnn

Iterations

Figure 5.10: Train and test error. S-RNN generalizes better than ERD with
a smaller test error.

S-RNN have more LSTMs than ERD, but each LSTM in S-RNN is half the size of

the LSTMs used in ERD. For ERD we used the best set of parameters described

in [67]. There, the authors cross-validated over model parameters. In the plot,

the jump in error around iteration 1500 corresponds to the decay in step size.

Due to addition of noise the test error of S-RNN exhibits a small positive slope,

but it always stays below ERD.

5.4.3 Human activity detection and anticipation

In this section we present S-RNN for modeling human activities. We consider

the CAD-120 [119] data set where the activities involve rich human-object inter-

actions. Each activity consist of a sequence of sub-activities (e.g. moving, drink-

ing etc.) and objects affordance (e.g., reachable, drinkable etc.), which evolves

as the activity progresses. Detecting and anticipating the sub-activities and af-

fordance enables personal robots to assist humans. However, the problem is

137

challenging as it involves complex interactions – humans interact with multiple

objects during an activity, and objects also interact with each other (e.g. pour-

ing water from “glass” into a “container”), which makes it a particularly good

fit for evaluating our method. Koppula et al. [121, 119] represents such rich

spatio-temporal interactions with the st-graph shown in Figure 5.5b, and mod-

els it with a spatio-temporal CRF. In this experiment, we show that modeling

the same st-graph with S-RNN yields superior results. We use the node and

edges features from [119].

Figure 5.3b shows our S-RNN architecture to model the st-graph. Since the

number of objects varies with environment, factor sharing between the object

nodes and the human-object edges becomes crucial. In S-RNN, RV2
and RE1

han-

dles all the object nodes and the human-object edges respectively. This allows

our fixed S-RNN architecture to handle varying size st-graphs. For edgeRNNs

we use a single layer LSTM of size 128, and for nodeRNNs we use LSTM(256)-

softmax(·). At each time step, the human nodeRNN outputs the sub-activity

label (10 classes), and the object nodeRNN outputs the affordance (12 classes).

Having observed the st-graph upto time t, the goal is to detect the sub-activity

and affordance labels at the current time t, and also anticipate their future labels

of the time step t + 1. For detection we train S-RNN on the labels of the cur-

rent time step. For anticipation we train the architecture to predict the labels

of the next time step, given the observations upto the current time. We also

train a multi-task version of S-RNN, where we add two softmax layers to each

nodeRNN and jointly train for anticipation and detection.

Table 5.2 shows the detection and anticipation F1-scores averaged over all

the classes. S-RNN significantly improves over Koppula et al. on both anticipa-

138

Table 5.2: Results on CAD-120 [119]. S-RNN architecture derived from
the st-graph in Figure 5.5b outperforms Koppula et al. [121, 119]
which models the same st-graph in a probabilistic framework.
S-RNN in multi-task setting (joint detection and anticipation)
further improves the performance.

Detection F1-score Anticipation F1-score

Method
Sub- Object Sub- Object

activity (%) Affordance (%) activity (%) Affordance (%)

Koppula et al. [121, 119] 80.4 81.5 37.9 36.7

S-RNN w/o edgeRNN 82.2 82.1 64.8 72.4

S-RNN 83.2 88.7 62.3 80.7

S-RNN (multi-task) 82.4 91.1 65.6 80.9

tion [121] and detection [119]. On anticipating object affordance S-RNN F1-score

is 44% more than [121], and 7% more on detection. S-RNN does not have any

Markov assumptions like spatio-temporal CRF, and therefore, it better models

the long-time dependencies needed for anticipation. The table also shows the

importance of edgeRNNs in handling spatio-temporal components. EdgeRNN

transfers the information from the human to objects, which helps is predicting

the object labels. Therefore, S-RNN without the edgeRNNs poorly models the

objects. This signifies the importance of edgeRNNs and also validates our de-

sign. Finally, training S-RNN in a multi-task manner works best in majority of

the cases. In Figure 5.11 we show the visualization of an eating activity. We

show one representative frame from each sub-activity and our corresponding

predictions.

S-RNN complexity. In terms of complexity, we discuss two aspects as a func-

tion of the underlying st-graph: (i) the number of RNNs in the mixture; and (ii)

the complexity of forward-pass. The number of RNNs depends on the number

139

null reaching moving drinking moving placing null

stationary reachable movable drinkable moveableGround-truth placeable stationary

Anticipation
Detection

O
bj

ec
t

A
ff

or
da

nc
e

Ground-truth

Anticipation
Detection

H
um

an
A

ct
iv

ity

(t-1)

(t-1)

time (t)

Figure 5.11: Qualitative result on eating activity on CAD-120. Shows
multi-task S-RNN detection and anticipation results. For the
sub-activity at time t, the labels are anticipated at time t − 1.

of semantically similar nodes in the st-graph. The overall S-RNN architecture

is compact because the edgeRNNs are shared between the nodeRNNs, and the

number of semantic categories are usually few in context-rich applications. Fur-

thermore, because of factor sharing the number of RNNs does not increase if

more semantically similar nodes are added to the st-graph. The forward-pass

complexity depends on the number of RNNs. Since the forward-pass through

all edgeRNNs and nodeRNNs can happen in parallel, in practice, the complex-

ity only depends on the cascade of two neural networks (edgeRNN followed by

nodeRNN).

5.4.4 Driver maneuver anticipation

We now present S-RNN for another application which involves anticipating ma-

neuvers several seconds before they happen. For example, anticipating a future

lane change maneuver several seconds before the wheel touches the lane mark-

ings. This problem requires spatial and temporal reasoning of the driver, and

the sensory observations from inside and outside of the car. It can be repre-

140

sented with the st-graph shown in Figure 5.5c. The st-graph represents the in-

teractions between the observations outside the vehicle (eg. the road features),

the driver’s maneuvers, and the observations inside the vehicle (eg. the driver’s

facial features). In Chapter 4 (Section 4.8) we proposed a Bayesian network

AIO-HMM for modeling this problem. AIO-HMM is a probabilistic approach

for modeling the st-graph in Figure 5.5c. We now model the same st-graph with

S-RNN architecture using the features we described in Chapter 4.

The nodeRNN models the driver, and the two edgeRNNs model the inter-

actions between the driver and the observations inside the vehicle, and the ob-

servations outside the vehicle. The driver node is labeled with the future ma-

neuver and, the observation nodes do not carry any label. The output of the

driver nodeRNN is softmax probabilities of the following five maneuvers: {Left

lane change, right lane change, left turn, right turn, straight driving}. Our nodeRNN

architecture is FC(64)-softmax(5), and edgeRNN is LSTM(64). The resulting S-

RNN architecture is same as the Fusion-RNN architecture we proposed in Sec-

tion 4.6.2. Therefore, the Fusion-RNN and AIO-HMM proposed in Chapter 4

are alternate approaches for modeling the same st-graph. In Chapter 4 we also

showed that Fusion-RNN outperforms AIO-HMM by a significant margin.

5.5 Conclusion

In this chapter we proposed a generic and principled approach for combining

high-level spatio-temporal graphs with sequence modeling success of RNNs.

We make use of factor graph, and factor sharing in order to obtain an RNN mix-

ture that is scalable and applicable to any problem expressed over st-graphs.

141

Our RNN mixture captures the rich interactions in the underlying st-graph

through connections between the RNNs. It learns the dependencies between

the output labels by sharing RNNs between the outputs.

We demonstrated significant improvements with S-RNN on three diverse

spatio-temporal problems. We showed that representing human motion over

st-graph and learning via S-RNN outperforms state-of-the-art RNN based meth-

ods. We further showed, on two context-rich spatio-temporal problems: (i)

human-object interaction; and (ii) driver maneuver anticipation; that learning

S-RNN from their st-graphs outperforms the existing state-of-the-art non-deep

learning based methods on the same st-graph. By visualizing the memory cells

we showed that S-RNN learns certain semantic sub-motions, and demonstrated

its modularity by generating hybrid human motions. Future work includes

combining S-RNN with CNNs for spatio-temporal feature learning [229], and

developing inference methods on S-RNN for structured-output prediction.

142

CHAPTER 6

KNOWLEDGE-ENGINE FOR ROBOTS

Typically every robot learn in isolation from other robots. While many re-

search groups teach robots different concepts about the physical world such as

grasping, affordances etc., there does not exist a common platform for robots

to exchange and share the learned knowledge. In this chapter we introduce

a knowledge-engine, which learns and shares knowledge representations, for

robots to carry out a variety of tasks. Building such an engine brings with it the

challenge of dealing with multiple data modalities including symbols, natural

language, haptic senses, robot trajectories, visual features and many others. The

knowledge stored in the engine comes from multiple sources including physical

interactions that robots have while performing tasks (perception, planning and

control), knowledge bases from the Internet and learned representations from

several robotics research groups.

Contributions of this chapter. This knowledge-engine is developed in col-

laboration with several co-authors (Saxena, Jain, Sener, Jami, Misra, and Kop-

pula [194]), and we call it RoboBrain. This dissertation primarily contributes the

overall system architecture of RoboBrain, and its application in planning good

trajectories. For completeness, in this chapter we also describe the formal defini-

tion of knowledge-engine, and the query language for accessing the knowledge.

RoboBrain is open-source and available at: http://www.robobrain.me

143

http://www.robobrain.me

6.1 Why do robots need a knowledge engine?

Over the last decade, we have seen many successful applications of large-scale

knowledge systems. Examples include Google knowledge graph [50], IBM Wat-

son [63], Wikipedia, and many others. These systems know answers to many of

our day-to-day questions, and not crafted for a specific task, which makes them

valuable for humans. Inspired by them, researchers have aggregated domain

specific knowledge by mining data [8, 23], and processing natural language [30],

images [46] and speech [160]. These sources of knowledge are specifically de-

signed for humans, and their human centric design makes them of limited use

for robots—for example, imagine a robot querying a search engine for how to

“bring sweet tea from the kitchen” (Figure 6.1).

In order to perform a task, robots require access to a large variety of in-

formation with finer details for performing perception, planning, control and

natural language understanding. When asked to bring sweet tea, as shown in

Figure 6.1, the robot would need access to the knowledge for grounding the

language symbols into physical entities, the knowledge that sweet tea can ei-

ther be on a table or in a fridge, and the knowledge for inferring the appropri-

ate plans for grasping and manipulating objects. Efficiently handling this joint

knowledge representation across different tasks and modalities is still an open

problem.

In this chapter we present RoboBrain that allows robots to learn and share

such representations of knowledge. We learn these knowledge representations

from a variety of sources, including interactions that robots have while per-

forming perception, planning and control, as well as natural language and vi-

144

sweet
_tea

lo
ok
s_
lik
e

grasp_feature

table

kept

pouring

has
_tra
jec
tory

looks_like

sub
jec
t_o
f

obje
ct_o

f

object_of

first_order_
collection

type_of

refrigerator looks_li
ke

object_of

Perception
Module Environment

Perception
Query

Planning
Module

Planning
Query

Representation

Representation

Figure 6.1: An example showing a robot using RoboBrain for perform-
ing tasks. The robot is asked “Bring me sweet tea from the
kitchen”, where it needs to translate the instruction into the
perceived state of the environment. RoboBrain provides use-
ful knowledge to the robot for performing the task: (a) sweet
tea can be kept on a table or inside a refrigerator, (b) bottle can
be grasped in certain ways, (c) opened sweet tea bottle needs
to be kept upright, (d) the pouring trajectory should obey user
preferences of moving slowly to pour, and so on.

sual data from the Internet. Our representation considers several modalities

including symbols, natural language, visual or shape features, haptic proper-

ties, and so on. RoboBrain connects this knowledge from various sources and

allow robots to perform diverse tasks by jointly reasoning over multiple data

modalities.

RoboBrain enables sharing from multiple sources by representing the knowl-

edge in a graph structure. Traversals on the RoboBrain graph allow robots to

145

Figure 6.2: A visualization of the RoboBrain graph on Nov 2014, show-
ing about 45K nodes and 100K directed edges. The left in-
set shows a zoomed-in view of a small region of the graph
with rendered media. This illustrates the relations between
multiple modalities namely images, heatmaps, words and
human poses. For high-definition graph visualization, see:
http://pr.cs.cornell.edu/robobrain/graph.pdf

gather the specific information they need for a task. This includes the semantic

information, such as different grasps of the same object, as well as the functional

knowledge, such as spatial constraints (e.g., a bottle is kept on the table and not

the other way around). The key challenge lies in building this graph from a

variety of knowledge sources while ensuring dense connectivity across nodes.

Furthermore, there are several challenges in building a system that allows con-

current and distributed update, and retrieval operations.

We present use of RoboBrain as-a-service, which allow researchers to effort-

lessly use the state-of-the-art algorithms. We also present experiments to show

that sharing knowledge representations through RoboBrain improves existing

path planning algorithms. RoboBrain is a collaborative project that we support

by designing a large-scale cloud architecture. In the current state, RoboBrain

stores and shares knowledge across several research projects [223, 159, 96, 99,

146

http://pr.cs.cornell.edu/robobrain/graph.pdf

100, 121, 246, 139] and Internet knowledge sources [138, 61]. RoboBrain knowl-

edge graph is available at http://www.robobrain.me.

In this chapter we summarize the key ideas and challenges in building a

knowledge-engine for robots. The goal of this chapter is to present an over-

all view of the RoboBrain, its architecture, functionalities, and demonstrate its

application to robotics. In Section 6.4 we formally define the RoboBrain graph

and describe its system architecture in Section 6.5. In order for robots to use

RoboBrain we propose the Robot Query Library in Section 6.6. In Section 6.7 we

present the application of RoboBrain in path planning.

6.2 Related work

We now describe some works related to RoboBrain. We first give an overview

of the existing knowledge bases and describe how RoboBrain differs from them.

We then describe some works in robotics that can benefit from RoboBrain, and

also discuss some of the related on-going efforts.

Knowledge bases. Collecting and representing a large amount of information

in a knowledge base (KB) has been widely studied in the areas of data min-

ing, natural language processing and machine learning. Early seminal works

have manually created KBs for the study of common sense knowledge (Cyc

[138]) and lexical knowledge (WordNet [61]). With the growth of Wikipedia,

KBs started to use crowdsourcing (DBPedia [8], Freebase [23]) and automatic

information extraction (Yago [210, 85], NELL [30]) for mining knowledge.

One of the limitations of these KBs is their strong dependence on a single

147

http://www.robobrain.me

modality that is the text modality. There have been few successful attempts to

combine multiple modalities. ImageNet [46] and NEIL [34] enriched text with

images obtained from Internet search. They used crowdsourcing and unsuper-

vised learning to get the object labels.

We have seen successful applications of the existing KBs within the modal-

ities they covered, such as IBM Watson Jeopardy Challenge [64]. However, the

existing KBs are human centric and do not directly apply to robotics. The robots

need finer details about the physical world, e.g., how to manipulate objects, how

to move in an environment, etc. In RoboBrain we combine knowledge from the

Internet sources with finer details about the physical world, from RoboBrain

project partners, to get an overall rich graph representation.

Robot Learning. For robots to operate autonomously they should perceive their

environments, plan paths, manipulate objects and interact with humans. We

describe previous work in each of these areas and how RoboBrain complements

them.

Perceiving the environment. Perception is a key element of many robotic tasks. It

has been applied to object labeling [134, 4, 246], scene understanding [113, 80],

robot localization [155, 165], path planning [112], and object affordances [45,

125]. RoboBrain stores perception related knowledge in the form of 3D point

clouds, grasping features, images and videos. It also connects this knowledge

to human understandable concepts from the Internet knowledge sources.

Path planning and manipulation. Planning algorithms formulate action plans

which are used by robots to move around and modify its environment. Planning

algorithms have been proposed for the problems of motion planning [256, 195],

148

task planning [24] and symbolic planning [187]. Some planning applications

include robots baking cookies [24], folding towels [151], assembling furni-

ture [115], and preparing pancakes [11]. The previous works have also learned

planning parameters using Inverse Optimal Control [181, 96]. RoboBrain stores

the planning parameters learned by previous works and allow the robots to

query for the parameters.

Interacting with humans. Human-robot interaction includes collaborative tasks

between humans and robots [168], generating safe and human-like robot mo-

tion [149, 71, 55, 28], interaction through natural language [222, 158], etc. These

applications require joint treatment of perception, manipulation and natural

language understanding. RoboBrain stores different data modalities required

by these applications.

Previous efforts on connecting robots range from creating a common oper-

ating system (ROS) for robots [178] to sharing data acquired by various robots

via cloud [239, 5]. For example, the RoboEarth [239] provides a platform for the

robots to store and off-load computation to the cloud and communicate with

other robots; and the KIVA systems [5] use the cloud to coordinate motion for

hundreds of mobile platforms. On the other hand, RoboBrain provides a knowl-

edge representation layer on top of data storing, sharing and communication.

Open-Ease [12] is a related on-going effort towards building a knowledge-

engine for robots. Open-Ease and RoboBrain differ in the way they learn and

represent knowledge. In Open-Ease the knowledge is represented as formal

statements using pre-defined templates. On the other hand, the knowledge in

RoboBrain is represented as a graph. The nodes of the RoboBrain graph have

no pre-defined templates and they can be any robotic concept like grasping fea-

149

tures, trajectory parameters, and visual data. This graph representation allows

partner projects to easily integrate their learned concepts in RoboBrain. The se-

mantic meaning of concepts in the RoboBrain graph are represented by their

connectivity patterns in the graph.

6.3 Overview

RoboBrain is a never ending learning system that continuously incorporates

new knowledge from its partner projects and from different Internet sources.

One of the functions of RoboBrain is to represent the knowledge from various

sources as a graph, as shown in Figure 6.2. The nodes of the graph represent

concepts and edges represent the relations between them. The connectivity of

the graph is increased through a set of graph operations that allow additions,

deletions and updates to the graph. So far RoboBrain has successfully connected

knowledge from sources like WordNet, ImageNet, Freebase, OpenCyc, parts of

Wikipedia and other partner projects. These knowledge sources provide lexical

knowledge, grounding of concepts into images and common sense facts about

the world.

The knowledge from the partner projects and Internet sources can some-

times be erroneous. RoboBrain handles inaccuracies in knowledge by maintain-

ing beliefs over the correctness of the concepts and relations. These beliefs de-

pend on how much RoboBrain trusts a given source of knowledge, and also the

feedback it receives from crowdsourcing (described below). For every incoming

knowledge, RoboBrain also makes a sequence of decisions on whether to form

new nodes, or edges, or both. Since the knowledge carries semantic meaning

150

RoboBrain makes many of these decisions based on the contextual information

that it gathers from nearby nodes and edges. For example, RoboBrain resolves

polysemy using the context associated with nodes. Resolving polysemy is im-

portant because a ‘plant’ could mean a ‘tree’ or an ‘industrial plant’ and merging

the nodes together will create errors in the graph.

RoboBrain incorporates supervisory signals from humans in the form of

crowdsourcing feedback. This feedback allows RoboBrain to update its beliefs

over the correctness of the knowledge, and to modify the graph structure if

required. While crowdsourcing feedback was used in some previous works as

means for data collection (e.g., [46, 191]), in RoboBrain they serve as supervisory

signals that improve the knowledge-engine. RoboBrain allows user interactions

at multiple levels: (i) Coarse feedback: these are binary feedback where a user

can “Approve” or “Disapprove” a concept in RoboBrain through its online web

interface; (ii) Graph feedback: these feedback are elicited on RoboBrain graph

visualizer, where a user modifies the graph by adding/deleting nodes or edges;

(iii) Robot feedback: these are the physical feedback given by users directly on

the robot.

In this chapter we discuss different aspects of RoboBrain, and show how

RoboBrain serves as a knowledge layer for the robots. In order to support

knowledge sharing, learning, and crowdsourcing feedback we develop a large-

scale distributed system. We describe the architecture of our system in Sec-

tion 6.5. In Section 6.6 we describe the robot query library, which allow robots

to interact with RoboBrain. Through experiments we show that robots can

use RoboBrain as-a-service and that knowledge sharing through RoboBrain im-

proves existing robotic applications such as path planning.

151

6.4 Knowledge engine formal definition

In this section we present the formal definition of RoboBrain. RoboBrain rep-

resents knowledge as a directed graph G = (V, E). The vertices V of the graph

stores concepts that can be of a variety of types such as images, text, videos,

haptic data, or learned entities such as affordances, deep learning features, pa-

rameters, etc. The edges E ⊆ V × V ×C are directed and represents the relations

between concepts. Each edge has an edge-type from a set C of possible edge-

types.

An edge (v1, v2, ℓ) is an ordered set of two nodes v1 and v2 and an

edge-type ℓ. Few examples of such edges are: (StandingHuman, Shoe,

CanUse), (StandingHuman, N(µ,Σ), SpatiallyDistributedAs) and (Grasping,

DeepFeature23, UsesFeature). We do not impose any constraints on the type

of data that nodes can represent. However, we require the edges to be consis-

tent with RoboBrain edge set C. We further associate each node and edge in the

graph with a feature vector representation and a belief. The feature vector represen-

tation of nodes and edges depend on their local connections in the graph, and

their belief is a scalar probability over the accuracy of the information that the

node or an edge represents. Tables 6.1 and 6.2 show few examples of nodes and

edge-types. A snapshot of the graph is shown in Figure 6.2.

Creating the Graph. Graph creation consists of never ending cycle of two stages

namely, knowledge acquisition and inference. Within the knowledge acquisi-

tion stage, we collect data from various sources and during the inference stage

we apply statistical techniques to update the graph structure based on the ag-

gregated data. We explain these two stages below.

152

Word an English word represented
as an ASCII string

DeepFeature feature function trained
with a Deep Neural Network

Image 2D RGB Image
PointCloud 3D point cloud
Heatmap heatmap parameter vector

Table 6.1: Some examples of different node types in our RoboBrain graph.
For full-list, please see the code documentation.

IsTypeOf human IsTypeOf a mammal
HasAppearance floor HasAppearance as

follows (this image)
CanPerformAction human CanPerformAction cutting
SpatiallyDistributedAs location of human is

SpatiallyDistributedAs
IsHolonym tree IsHolonym of leaf

Table 6.2: Some examples of different edge types in our RoboBrain graph.
For full-list, please see the code documentation.

1. Knowledge acquisition: RoboBrain accepts new information in the form of set

of edges, which we call a feed. A feed can either be from an automated algorithm

crawling the Internet sources or from one of RoboBrain’s partner projects. We

add a new feed to the existing graph through a sequence of union operations

performed on the graph. These union operations are then followed by an infer-

ence algorithm. More specifically, given a new feed consisting of a set of N edges

{(v1
1
, v1

2
, ℓ1) . . . (vN

1
, vN

2
, ℓN)}, and the existing graph G = (V, E). The graph union

operations give a graph G′ = (V ′, E′) as follows:

V ′ = v1
1 ∪ v1

2 ∪ . . . ∪ vN
1 ∪ vN

2 ∪ V

E′ = (v1
1, v

1
2, ℓ

1) ∪ . . . ∪ (vN
1 , v

N
2 , ℓ

N) ∪ E

(6.1)

2. Inference on the Graph: After adding the feed to the graph using equation (6.1),

we update the graph based on this new knowledge. This step outputs a se-

153

(a) Original graph (b) Feed insertion (c) after merge(Mug,Mug′)
→ Mug ◦ split(Cup) →
(Cup,Mug′)

Figure 6.3: Visualization of inserting new information. We insert ‘Sitting
human can use a mug’ and RoboBrain infers the necessary split
and merge operations on the graph. In (a) we show the original
sub-graph, In (b) information about a Mug is seen for the first
time and the corresponding node and edge are inserted, In (c)
inference algorithm infers that previously connected cup node
and cup images are not valid any more, and it splits the Cup

node into two nodes as Cup and Mug′ and then merges Mug′

and Mug nodes.

quence of graph operations which are then performed on the graph. These

graph operations modify the graph by adding new nodes or edges to the graph,

deleting nodes or edges from the graph, merging or splitting nodes, etc.

We mention two graph operations here: split and merge. The split operation

is defined as splitting a node into a set of two nodes. The edges having end

points in the split node are connected to one of the resultant nodes. A merge

operation is defined as merging two nodes into a single node, while updating

the edges connected to the merged nodes. An example of such an update is

shown in Figure 6.3. When a new information “sitting human can use a mug”

is added to the graph, it causes the split of the Cup node into two nodes: a

Cup and a Mug node. These two are then connected by an edge-type TypeOf.

Thorough description of the inference steps is beyond the scope of this chapter,

for more details see Saxena et al. [194]. We now describe the system architecture

of RoboBrain.

154

Knowledge Inference

Knowledge
acquisition

Knowledge Parser

Knowledge Storage

User Session
Logs

Serving Data

Public
APIsKnowledge Parser

Internet
 Knowledge Bases

 (Wikipedia,
ImageNet etc.)

Robo Brain
Project

Partners

Robo Brain
Crawler

Robo Brain
Knowledge Base

● Feeds
● User Feedback
● Machine Learning

parameters

Large Media
Storage
(Images,

Videos etc.)

Robots, Cars
and

Smart devices

Robo Brain
Query Language

Distributed Queue
Learning and Inference

Learning algorithms,
Disambiguation, Ranking,

Graph builder etc.

Robo Brain
Graph database

WWW

http://robobrain.me

Graph
Visualizer

CDN

Figure 6.4: RoboBrain system architecture. It consists of four intercon-
nected knowledge layers and supports various mechanisms for
users and robots to interact with RoboBrain.

6.5 System architecture

We now describe the system architecture of RoboBrain, shown in Figure 6.4.

The system consists of four interconnected layers: (a) knowledge acquisition,

(b) knowledge parser, (c) knowledge storage, and (d) knowledge inference. The

principle behind our design is to efficiently process large amount of unstruc-

tured multi-modal knowledge and represent it using the structured RoboBrain

graph. In addition, our design also supports various mechanisms for users and

robots to interact with RoboBrain. Below we discuss each of the components.

155

Knowledge acquisition layer is the interface between RoboBrain and differ-

ent sources of multi-modal data. Through this layer RoboBrain gets access to

new information which the other layers process. RoboBrain primarily collects

knowledge through partner projects, by crawling existing knowledge bases

such as Freebase, ImageNet, WordNet, etc., and from unstructured sources such

as Wikipedia.

Knowledge parser layer of RoboBrain processes the data acquired by the ac-

quisition layer and converts it to a consistent format for the storage layer. It

also marks the incoming data with appropriate meta- data such as timestamps,

source version number etc., for scheduling and managing future data process-

ing. Moreover, since the knowledge bases might change with time, it adds a

back pointer to the original source.

Knowledge storage layer of RoboBrain is responsible for storing different rep-

resentations of the data. In particular it consists of a NoSQL document stor-

age database cluster – RoboBrain Knowledge Base (RoboBrain-KB) – to store

“feeds” parsed by the knowledge parser, crowdsourcing feedback from users,

and parameters of different machine learning algorithms provided by Robo-

Brain project partners. RoboBrain-KB offloads large media content such as im-

ages, videos and 3D point clouds to a distributed object storage system built

using Amazon Simple Storage Service (S3). The real power of RoboBrain comes

through its graph database (RoboBrain-GD) which stores the structured knowl-

edge. The data from RoboBrain-KB is refined through multiple learning algo-

rithms and its graph representation is stored in RoboBrain-GD. The purpose

behind this design is to keep RoboBrain-KB as the RoboBrain’s single source of

truth (SSOT). SSOT centric design allows us to re-build RoboBrain-GD in case

156

of failures or malicious knowledge sources.

Knowledge inference layer contains the key processing and machine learning

components of RoboBrain. New and recently updated feeds go through a per-

sistent replicated distributed queuing system (Amazon SQS), which are then

consumed by some of our machine learning plugins (inference algorithm, graph

builder, etc.) and populates the graph database. These plugins along with other

learning algorithms (operating on the entire graph) constitute our learning and

inference framework.

RoboBrain supports various interaction mechanisms to enable robots and

users to communicate with the knowledge-engine. We develop a Robot Query

Library as a primary method for robots to interact with RoboBrain. We also

make available a set of public APIs to allow information to be presented on

the World Wide Web (WWW) for online learning mechanisms (eg., crowdsourc-

ing). RoboBrain serves all its data using a commercial content delivery network

(CDN) to reduce the end user latency.

6.6 Robot Query Library (RQL)

In this section we present the RQL query language, through which the robots

use RoboBrain for various robotic applications. The RQL provides a rich set of

retrieval functions and programming constructs to perform complex traversals on

the RoboBrain graph. An example of such a query is finding the possible ways

for humans to use a cup. This query requires traversing paths from the human

node to the cup node in the RoboBrain graph.

157

RQL allows expressing both the pattern of sub-graphs to match and the oper-

ations to perform on the retrieved information. An example of such an operation

is ranking the paths from the human to the cup node in the order of relevance.

The RQL admits following two types of functions: (i) graph retrieval functions;

and (ii) programming construct functions.

Graph retrieval function. The graph retrieval function is used to find sub-

graphs matching a given template of the form: Template: (u)→ [e]→ (v)

In the template above, the variables u and v are nodes in the graph and the

variable e is a directed edge from u to v. We represent the graph retrieval func-

tion with the keyword fetch and the corresponding RQL query takes the form:

fetch(Template) This RQL query finds the sub-graphs matching the template.

It instantiates the variables in the template to match the sub-graph and returns

the list of instantiated variables. We now give a few use cases of the retrieval

function for RoboBrain.

Example 6.6.1. RQL query to retrieve all the objects that a human can use

Query: fetch(({name : ‘Human′})→ [‘CanUse′]→ (v))

The above query returns a list of nodes that are connected to the node with

name Human and with an edge of type CanUse.

Programming construct functions. The programming construct functions serve

to process the sub-graphs retrieved by the graph retrieval function fetch. In or-

der to define these functions we make use of functional programming constructs

like map, filter and find. We now explain the use of some of these constructs

in RQL.

158

Example 6.6.2. RQL query to retrieve affordances of all the objects usable by a

human.

objects := fetch({name : ‘Human′})→ [‘CanUse′]→ (v)

affordances n := fetch({name : n})→ [‘HasAffordance′]→ (v)

map(λu→ affordances u) objects

In this example, we illustrate the use of map construct. The map takes as input

a function and a list, and then applies the function to every element of the list.

More specifically, in the example above, the function objects retrieves the list

of objects that the human can use. The affordances function takes as input an

object and returns its affordances. In the last RQL query, the map applies the

function affordances to the list returned by the function objects. We will use

fetch and map operations in the next section for path planning. See [194] for

more examples of RQL.

6.7 Applications to path planning

In this section we first show how RoboBrain can be used as-a-service by the

robots for path planning. We then show how RoboBrain can help robotics

projects by sharing knowledge within the projects and throughout the Internet.

159

vase
cup egg cereal

Task: Move the egg carton

Planning
argmax

Trajectory
parameters

Environment,
Objects

Task Top three
trajectories

Robobrain

Figure 6.5: RoboBrain for planning trajectory. The robot queries Robo-
Brain for the trajectory parameters (learned by Jain et al. [96])
to plan paths for the fragile objects like an egg carton.

6.7.1 Use of knowledge engine as-a-service

Our goal with providing RoboBrain as-a-service is to allow robots to use the rep-

resentations learned by different partner projects. This allows RoboBrain to ef-

fortlessly address many robotics applications. In the following we demonstrate

RoboBrain as-a-service feature for path planning. In [194] we also demonstrate

RoboBrain as-a-service feature for grounding natural language, and human-

activity anticipation. However, their discussion is beyond the scope of this dis-

sertation.

Path planning using RoboBrain

One key problem robots face in performing tasks in human environments is

identifying trajectories desirable to the users. An appropriate trajectory not only

needs to be geometrically valid (i.e., feasible and obstacle-free), but it also needs

to satisfy the user preferences [96, 90]. For example, a robot should move sharp

objects such as knife strictly away from nearby humans [94]. Such preferences

160

are commonly represented as cost functions which jointly model the environ-

ment, the task, and trajectories. Typically research groups have independently

learned different cost functions [96, 130, 113], which are not shared across these

groups. Here we show RoboBrain as-a-service for a robot to store and retrieve

the planning parameters.

In Figure 6.5 we illustrate the robot planning for an egg carton by query-

ing RoboBrain. Since eggs are fragile, users prefer to move them slowly and

close to the surface of the table. In order to complete the task, the robot queries

RoboBrain and retrieves the attributes of the egg carton and also the trajectory

parameters learned in the previous work by Jain et al. [96]. Using the retrieved

attributes and the parameters, the robot samples trajectories and executes the

top-ranked trajectory. Below we show the RQL queries.

attributes n := fetch ({name : n})→ [‘HasAttribute′]→ (v)

trajectories a := fetch ({handle : a})→ [‘HasTrajectory′]→ (v)

trajectory parameters := map(λa→ trajectories a) attributes ‘egg′

6.7.2 Improving path planning by knowledge sharing

RoboBrain allows sharing the knowledge learned by different research groups

as well as knowledge obtained from various internet sources. In this section we

show with an experiment how sharing knowledge improves path planning:

Sharing knowledge from the Internet. In this experiment we show that shar-

ing knowledge from several Internet sources using RoboBrain improves robotic

applications such as path planning. Knowledge from the Internet sources has

161

0 2 4 6 8 10
Feedbacks

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

nD
CG

@
3

No attributes
OpenCyc
RoboBrain

Figure 6.6: Sharing from Internet sources. The plot shows performance of
the algorithm by Jain et al. [96] for three settings of attributes.
This is an online algorithm that learns a good trajectory from
the user feedback. The performance is measured using the
nDCG metric [152], which represents the quality of the ranked
list of trajectories. RoboBrain combines information from mul-
tiple sources and hence its richer in attributes as compared to
retrieving attributes from OpenCyc alone.

been shown to help robots in planing better paths [224], understand natural

language [189, 223], and also recently in object retrieval [78]. However, for cer-

tain robotic tasks a single Internet source does not cover many of the real world

situations that the robot may encounter. In such situations it is desired to use

multiple sources to get richer representation. The RoboBrain graph is designed

to acquire and connect information from multiple Internet sources and make it

accessible to robots.

In this experiment we build upon the work by Jain et al. [96] for planning

trajectories that follow user preferences. The work relied on object attributes

in order to plan desirable trajectories. These attributes convey properties such

as whether an object is sharp, heavy, electronic etc. The attributes were manu-

ally defined by the authors [96]. In practice this is very challenging and time-

162

consuming because there are many objects and many attributes for each object.

Instead of manually defining the attributes, we can retrieve many of them from

the Internet knowledge sources such as OpenCyc, Wikipedia, etc. However, a

single knowledge source might not have attributes for all objects. The Robo-

Brain graph connects many attributes obtained from multiple Internet sources

to their respective objects.

Figure 6.6 illustrates the planning results when the robot does not use any

attributes, when it uses attributes from a single source (OpenCyc), and when it

use attributes from RoboBrain. The planning performance is best when using

RoboBrain since it covers more attributes than the OpenCyc alone. Most impor-

tantly all these attributes are retrieved from the RoboBrain graph with a single

RQL query as explained in Section 6.7.1.

6.8 Discussion and conclusion

RoboBrain graph currently has 44347 nodes (concepts) and 98465 edges (rela-

tions). The knowledge in the graph is obtained from the Internet sources and

through the project partners. For the success of many robotics application it is

important to relate and connect the concepts from these different knowledge

sources. In Figure 6.7 we plot the degree distribution of the RoboBrain graph

and compare it with the degree distribution of independent knowledge sources.

The graph of independent knowledge sources is the union of each knowledge

source, which have nodes from all the projects and the edges only between the

nodes from the same project. RoboBrain successfully connects projects and in-

creases the average degree per-node by 0.8. RoboBrain graph has fifteen thou-

163

0 5 10 15 20 25

Degree

0

5000

10000

15000

20000

C
o
u
n
t

RoboBrain

Independent Sources

Figure 6.7: Degree distribution of RoboBrain and the union of indepen-
dent knowledge sources. For the case of independent sources,
we only consider the edges between nodes from the same
source. RoboBrain connects different projects successfully:
number of nodes with degree 1 and 2 decrease and nodes with
degree 3 and more increase.

sand nodes with degree one. Most of these nodes come from Wikipedia and

WordNet. These nodes are not directly related to the physical world and repre-

sent concepts like political ideas, art categories, etc.

In this chapter we described different aspects and technical challenges in

building a knowledge-engine for robots. RoboBrain represents multiple data

modalities from various sources, and connects them to get an overall rich graph

representation. We presented an overview of the large-scale system architecture

and developed the Robot Query Library (RQL) for robots to use RoboBrain. We

illustrated path planning as simple RQL queries to RoboBrain. We also showed

in experiments that sharing knowledge through RoboBrain improves existing

path planning algorithms.

164

CHAPTER 7

CONCLUSION AND FUTURE WORK

While robots can learn certain skills from off-the-shelf available data sets.

For many other skills they need to observe and interact with humans. Learn-

ing and improving from human interactions will be a critical component of the

future robotic systems. Equally important will be the need to make the inter-

actions natural to the (non-expert) end user. In this dissertation we proposed

methods for learning from natural human interactions for several robotic prob-

lems. We focussed on interaction mechanisms that are scalable and easy to elicit

from non-expert users. We applied our methods on robotic manipulators and

assistive cars, and tested them in the real-world situations with many users.

We proposed a coactive learning framework for robotic manipulators to

learn from non-expert users. In our framework the user iteratively improves

the trajectory proposed by the robot but never reveals the optimal answer. In

order to allow such iterative improvements, we proposed several interaction

mechanisms that were intuitive to the end user. To scale the interactions fur-

ther, we proposed a crowdsourcing system which allow the users to reveal

their preferences by simply watching videos of robot navigating in human en-

vironments. Using our learning framework and the interaction mechanisms we

trained robots to perform various household tasks in context rich environments.

Assistive cars, also a kind of robots, are growing in popularity because of

their life saving features such as adaptive cruise control, automatic forward col-

lision avoidance etc. Furthermore, driving a car is one of the most naturally

occurring human-robot interaction. In this dissertation we addressed the ques-

tion: what a car can learn by observing its driver? We proposed a vehicular sensory

165

platform which by simply observing many examples of driving learns to antic-

ipate the maneuvers few seconds before they happen. Our learning algorithm

consisits of a sensory fusion RNN architecture which simultaneously learns to

anticipate and fuse the information from multiple sensors.

In order to address such spatio-temporal interactions more generally, we

proposed a generic and principled approach for transforming the spatio-

temporal graphs to structures of Recurrent Neural Networks (RNNs). Our

approach allows domain experts to express their high-level reasoning’s over

spatio-temporal graphs and then learn an expressive deep architecture to cap-

ture their reasoning. We applied our framework on several problems, including

to model human motion from motion capture data, for driving maneuver antic-

ipation, and for understanding human-object interaction.

The future works could explore ways for extending learning from natural

human interactions on both the application and algorithmic ends. We need

methods for handling uncertainty in perception which our work currently does

not address. This could require combining simultaneous localization and map-

ping (SLAM) methods with human-robot interactive learning. The field also

needs a formal human-robot interaction study that compares different kinds of

user feedback on their ease of use and the amount of information they carry.

For rapid progress in this area we could also equip robots with special feedback

interfaces that allow users to reveal their preferences with ease. Our current

transformation of spatio-temporal graphs to RNNs does not handle structured

output prediction [43], i.e. we predict each label independent of the other. This

extension could also be an interesting direction for the community.

Reproducibility of human-robot interactive learning experiments in equally

166

important and needs to be addressed. This is also challenging since it involves

the interplay between the robotic hardware, system integration, and the human

subject. In order to make such experiments reproducible we should borrow

ideas from the information retrieval community which has extensively pub-

lished ways for evaluating search engines and their interaction with real-world

users. Human-robot interactive learning systems should also take inspiration

from open-source planning and perception libraries [178] that have greatly ac-

celerated progress in their respective fields.

167

APPENDIX A

CHAPTER 2 APPENDIX

A.1 Proof for Average Regret

This proof builds upon Shivaswamy & Joachims [199].

We assume the user hidden score function s∗(x, y) is contained in the family

of scoring functions s(x, y; w∗O,w
∗
E) for some unknown w∗O and w∗E. Average regret

for TPP over T rounds of interactions can be written as:

REGT =
1

T

T∑

t=1

(s∗(xt, y
∗
t) − s∗(xt, yt))

=
1

T

T∑

t=1

(s(xt, y
∗
t ; w∗O,w

∗
E) − s(xt, yt; w∗O,w

∗
E))

We further assume the feedback provided by the user is strictly α-

informative and satisfy following inequality:

s(xt, ȳt; w∗O,w
∗
E) ≥s(xt, yt; w∗O,w

∗
E) + α[s(xt, y

∗
t ; w∗O,w

∗
E)

− s(xt, yt; w∗O,w
∗
E)] − ξt (A.1)

Later we relax this constraint and requires it to hold only in expectation.

This definition states that the user feedback should have a score of ȳt that

is higher than that of yt by a fraction α ∈ (0, 1] of the maximum possible range

s(xt, y
∗
t ; w∗O,w

∗
E) − s(xt, yt; w∗O,w

∗
E).

168

Theorem 1. The average regret of trajectory preference perceptron receiving strictly

α-informative feedback can be upper bounded for any [w∗O; w∗E] as follows:

REGT ≤
2C
∥
∥
∥[w∗O; w∗E]

∥
∥
∥

α
√

T
+

1

αT

T∑

t=1

ξt (A.2)

where C is constant such that
∥
∥
∥
[

φO(x, y); φE(x, y)
]∥∥
∥

2
≤ C.

Proof: After T rounds of feedback, using weight update equations of wE and

wO we can write:

w∗O · w
(T+1)

O
= w∗O · w

(T)

O
+ w∗O · (φO(xT , ȳT) − φO(xT , yT))

w∗E · w
(T+1)

E
= w∗E · w

(T)

E
+ w∗E · (φE(xT , ȳT) − φE(xT , yT))

Adding the two equations and recursively reducing the right gives:

w∗O · w
(T+1)

O
+ w∗E · w

(T+1)

E
=

T∑

t=1

(s(xt, ȳt; w∗O,w
∗
E)

− s(xt, yt; w∗O,w
∗
E)) (A.3)

Using Cauchy-Schwarz inequality the left hand side of equation (A.3) can be

bounded as:

w∗O · w
(T+1)

O
+ w∗E · w

(T+1)

E
≤
∥
∥
∥[w∗O; w∗E]

∥
∥
∥

∥
∥
∥[w

(T+1)

O
; w

(T+1)

E
]
∥
∥
∥ (A.4)

169

∥
∥
∥[w

(T+1)

O
; w

(T+1)

E
]
∥
∥
∥ can be bounded by using weight update equations:

w
(T+1)

O
· w(T+1)

O
+ w

(T+1)

E
· w(T+1)

E
= w

(T)

O
· w(T)

O
+ w

(T)

E
· w(T)

E

+ 2w
(T)

O
· (φO(xT , ȳT) − φO(xT , yT))

+ 2w
(T)

E
· (φE(xT , ȳT) − φE(xT , yT))

+ (φO(xT , ȳT) − φO(xT , yT)) · (φO(xT , ȳT) − φO(xT , yT))

+ (φE(xT , ȳT) − φE(xT , yT)) · (φE(xT , ȳT) − φE(xT , yT))

≤ w
(T)

O
· w(T)

O
+ w

(T)

E
· w(T)

E
+ 4C2 ≤ 4C2T (A.5)

∴

∥
∥
∥[w

(T+1)

O
; w

(T+1)

E
]
∥
∥
∥ ≤ 2C

√
T (A.6)

Eq. (A.5) follows from the fact that s(xT , yT ; w
(T)

O
,w

(T)

E
) > s(xT , ȳT ; w

(T)

O
,w

(T)

E
) and

∥
∥
∥
[

φO(x, y); φE(x, y)
]∥∥
∥

2
≤ C. Using equations (A.4) and (A.6) gives following bound

on (A.3):

T∑

t=1

(s(xt, ȳt; w∗O,w
∗
E) − s(xt, yt; w∗O,w

∗
E))

≤ 2C
√

T
∥
∥
∥[w∗O; w∗E]

∥
∥
∥ (A.7)

Assuming strictly α-informative feedback and re-writing equation (A.1) as:

s(xt, y
∗
t ; w∗O,w

∗
E) − s(xt, yt; w∗O,w

∗
E)

≤ 1

α
((s(xt, ȳt; w∗O,w

∗
E) − s(xt, yt; w∗O,w

∗
E)) − ξt) (A.8)

Combining equations (A.7) and (A.8) gives the bound on average re-

gret (A.2).

170

A.2 Proof for Expected Regret

We now show the regret bounds for TPP under a weaker feedback assumption

– expected α-informative feedback:

Et[s(xt, ȳt;w
∗
O,w

∗
E)] ≥ s(xt, yt; w∗O,w

∗
E)

+ α[s(xt, y
∗
t ; w∗O,w

∗
E) − s(xt, yt; w∗O,w

∗
E)] − ξt

where the expectation is under choices ȳt when yt and xt are known.

Corollary 2. The expected regret of trajectory preference perceptron receiving expected

α-informative feedback can be upper bounded for any [w∗O; w∗E] as follows:

E[REGT] ≤
2C
∥
∥
∥[w∗G; w∗O]

∥
∥
∥

α
√

T
+

1

αT

T∑

t=1

ξ̄t (A.9)

Proof: Taking expectation on both sides of equation (A.3), (A.4) and (A.5)

yields following equations respectively:

E[w∗O · w
(T+1)

O
+ w∗E · w

(T+1)

E
] =

T∑

t=1

E[(s(xt, ȳt; w∗O,w
∗
E)

− s(xt, yt; w∗O,w
∗
E))] (A.10)

E[w∗O · w
(T+1)

O
+w∗E · w

(T+1)

E
]

≤
∥
∥
∥[w∗O; w∗E]

∥
∥
∥ E
[∥
∥
∥[w

(T+1)

O
; w

(T+1)

E
]
∥
∥
∥

]

E[w
(T+1)

O
· w(T+1)

O
+ w

(T+1)

E
· w(T+1)

E
] ≤ 4C2T

171

Applying Jensen’s inequality on the concave function
√·we get:

E[w∗O · w
(T+1)

O
+ w∗E · w

(T+1)

E
]

≤
∥
∥
∥[w∗O; w∗E]

∥
∥
∥ E
[∥
∥
∥[w

(T+1)

O
; w

(T+1)

E
]
∥
∥
∥

]

≤
∥
∥
∥[w∗O; w∗E]

∥
∥
∥

√

E[w
(T+1)

O
· w(T+1)

O
+ w

(T+1)

E
· w(T+1)

E
]

Using (A.10) gives the following bound:

T∑

t=1

E[s(xt, ȳt; w∗O,w
∗
E) − s(xt, yt; w∗O,w

∗
E)]

≤ 2C
√

T
∥
∥
∥[w∗O; w∗E]

∥
∥
∥

Now using the fact that the user feedback is expected α-informative gives the

regret bound (A.9).

172

APPENDIX B

CHAPTER 4 APPENDIX

B.1 Modeling Maneuvers with AIO-HMM

Given T seconds long driving context C before the maneuverM, we learn a gen-

erative model for the context P(C|M). The driving context C consists of the out-

side driving context and the inside driving context. The outside and inside con-

texts are temporal sequences represented by the outside features xT
1
= {x1, .., xT }

and the inside features zT
1
= {z1, .., zT } respectively. The corresponding sequence

of the driver’s latent states is hT
1
= {h1, .., hT }. x and z are vectors and h is a

discrete state.

P(C|M) =
∑

hT
1

P(zT
1 , x

T
1 , h

T
1 |M)

= P(xT
1 |M)

∑

hT
1

P(zT
1 , h

T
1 |xT

1 ,M)

∝
∑

hT
1

P(zT
1 , h

T
1 |xT

1 ,M) (B.1)

We model the correlations between x, h and z with an AIO-HMM as shown in

Figure 4.10. The AIO-HMM models the distribution in equation (B.1). It does

not assume any generative process for the outside features P(xT
1
|M). It instead

models them in a discriminative manner. The top (input) layer of the AIO-HMM

consists of outside features xT
1
. The outside features then affect the driver’s la-

tent states hT
1
, represented by the middle (hidden) layer, which then generates

the inside features zT
1

at the bottom (output) layer. The events inside the ve-

hicle such as the driver’s head movements are temporally correlated because

they are generally smooth. The AIO-HMM handles these dependencies with

173

autoregressive connections in the output layer.

Model Parameters. AIO-HMM has two types of parameters: (i) state transi-

tion parameters w; and (ii) observation emission parameters (µ,Σ). We use set

S to denote the possible latent states of the driver. For each state h = i ∈ S,

we parametrize transition probabilities of leaving the state with log-linear func-

tions, and parametrize the output layer feature emissions with normal distribu-

tions.

Transition: P(ht = j|ht−1 = i, xt; wi j) =
ewi j·xt

∑

l∈S ewil·xt

Emission: P(zt|ht = i, xt, zt−1;µit,Σi) = N(zt|µit,Σi)

The inside (vehicle) features represented by the output layer are jointly in-

fluenced by all three layers. These interactions are modeled by the mean and

variance of the normal distribution. We model the mean of the distribution us-

ing the outside and inside features from the vehicle as follows:

µit = (1 + ai · xt + bi · zt−1)µi

In the equation above, ai and bi are parameters that we learn for every state

i ∈ S. Therefore, the parameters we learn for state i ∈ S are θi = {µi, ai, bi, Σi and

wi j| j ∈ S}, and the overall model parameters are Θ = {θi|i ∈ S}.

B.1.1 Learning AIO-HMM parameters

The training data D = {(xTn

1,n
, z

Tn

1,n
)|n = 1, ..,N} consists of N instances of a maneu-

verM. The goal is to maximize the data log-likelihood.

l(Θ;D) =

N∑

n=1

log P(z
Tn

1,n
|xTn

1,n
;Θ) (B.2)

174

Directly optimizing equation (B.2) is challenging because parameters h repre-

senting the driver’s states are latent. We therefore use the iterative EM pro-

cedure to learn the model parameters. In EM, instead of directly maximizing

equation (B.2), we maximize its simpler lower bound. We estimate the lower

bound in the E-step and then maximize that estimate in the M-step. These two

steps are repeated iteratively.

E-step. In the E-step we get the lower bound of equation (B.2) by calculating the

expected value of the complete data log-likelihood using the current estimate of

the parameter Θ̂.

E-step: Q(Θ; Θ̂) = E[lc(Θ;Dc)|Θ̂,D] (B.3)

where lc(Θ;Dc) is the log-likelihood of the complete dataDc defined as:

Dc = {(xTn

1,n
, z

Tn

1,n
, h

Tn

1,n
)|n = 1, ..,N} (B.4)

lc(Θ;Dc) =

N∑

n=1

log P(z
Tn

1,n
, h

Tn

1,n
|xTn

1,n
;Θ) (B.5)

We should note that the occurrences of hidden variables h in lc(Θ;Dc) are

marginalized in equation (B.3), and hence h need not be known. We efficiently

estimate Q(Θ; Θ̂) using the forward-backward algorithm [164].

M-step. In the M-step we maximize the expected value of the complete data

log-likelihood Q(Θ; Θ̂) and update the model parameter as follows:

M-step: Θ = arg max
Θ

Q(Θ; Θ̂) (B.6)

Solving equation (B.6) requires us to optimize for the parameters µ, a, b, Σ

and w. We optimize all parameters expect w exactly by deriving their closed

form update expressions. We optimize w using the gradient descent.

175

B.1.2 Inference of Maneuvers

Our learning algorithm trains separate AIO-HMM models for each maneuver.

The goal during inference is to determine which model best explains the past T

seconds of the driving context not seen during training. We evaluate the likeli-

hood of the inside and outside feature sequences (zT
1

and xT
1
) for each maneuver,

and anticipate the probability PM of each maneuverM as follows:

PM = P(M|zT
1 , x

T
1) ∝ P(zT

1 , x
T
1 |M)P(M) (B.7)

Algorithm 5 shows the complete inference procedure. The inference in equa-

tion (B.7) simply requires a forward-pass [164] of the AIO-HMM, the complexity

of which is O(T (|S|2 + |S||z|3 + |S||x|)). However, in practice it is only O(T |S||z|3)

because |z|3 ≫ |S | and |z|3 ≫ |x|. Here |S| is the number of discrete states repre-

senting the driver’s intention, while |z| and |x| are the dimensions of the inside

and outside feature vectors respectively. In equation (B.7) P(M) is the prior

probability of maneuver M. We assume an uninformative uniform prior over

the maneuvers.

176

Algorithm 5: Anticipating maneuvers

input Driving videos, GPS, Maps and Vehicle Dynamics

output Probability of each maneuver

Initialize the face tracker with the driver’s face

while driving do

Track the driver’s face [238]

Extract features zT
1

and xT
1

(Sec. 4.7)

Inference PM = P(M|zT
1
, xT

1
) (Eq. (B.7))

Send the inferred probability of each maneuver to ADAS

end while

177

BIBLIOGRAPHY

[1] Bosch urban. http://bit.ly/1feM3JM. Accessed: 2015-04-23.

[2] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz. Keyframe-based
learning from demonstration. International Journal of Social Robotics,
4(4):343–355, 2012.

[3] R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion
roadmap: A sampling framework for planning with markov motion un-
certainty. In Proceedings of Robotics: Science and Systems, 2007.

[4] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena. Contextually
guided semantic labeling and search for 3d point clouds. International
Journal of Robotics Research, 2012.

[5] R. D. Andrea. Guest editorial: A revolution in the warehouse: A retro-
spective on kiva systems and the grand challenges ahead. IEEE Tran. on
Automation Science and Engineering (T-ASE), 9(4), 2012.

[6] A. Andreas, P. Lenz, and R. Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2012.

[7] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–
483, 2009.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.
Dbpedia: A nucleus for a web of open data. Springer, 2007.

[9] T. Baltrusaitis, P. Robinson, and L-P. Morency. Constrained local neural
fields for robust facial landmark detection in the wild. In ICCV Workshop,
2013.

[10] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-
eron, N. Bouchard, and Y. Bengio. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature Learning NIPS
2012 Workshop, 2012.

[11] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Panger-
cic, T. Ruhr, and M. Tenorth. Robotic roommates making pancakes. In

178

http://bit.ly/1feM3JM

Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference
on, pages 529–536. IEEE, 2011.

[12] M. Beetz, M. Tenorth, and J. Winkler. open-ease a knowledge processing
service for robots and robotics/ai researchers. TZI Technical Report, 74,
2014.

[13] Y. Bengio and O. Delalleau. On the expressive power of deep architec-
tures. In Algorithmic Learning Theory, pages 18–36, 2011.

[14] Y. Bengio and O. Frasconi. An input output hmm architecture. Advances
in Neural Information Processing Systems, 1995.

[15] Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten
word recognizer using spatial representation, convolutional neural net-
works, and hidden markov models. Advances in Neural Information Pro-
cessing Systems, 1994.

[16] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning.
In Proceedings of the International Conference on Machine Learning, 2009.

[17] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion
patterns of people for compliant robot motion. International Journal of
Robotics Research, 2005.

[18] D. Berenson, P. Abbeel, and K. Goldberg. A robot path planning frame-
work that learns from experience. In Proceedings of the International Con-
ference on Robotics and Automation, 2012.

[19] J. V. D. Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path plan-
ning for robots with motion uncertainty and imperfect state information.
In Proceedings of Robotics: Science and Systems, June 2010.

[20] H. Berndt, J. Emmert, and K. Dietmayer. Continuous driver intention
recognition with hidden markov models. In IEEE Intelligent Transportation
Systems Conference, 2008.

[21] S. Bhattacharya, M. Likhachev, and V. Kumar. Identification and represen-
tation of homotopy classes of trajectories for search-based path planning
in 3d. In Proceedings of Robotics: Science and Systems, 2011.

179

[22] R. Bischoff, A. Kazi, and M. Seyfarth. The morpha style guide for icon-
based programming. In Proceedings. 11th IEEE International Workshop on
RHIC., 2002.

[23] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In Proceedings of the ACM SIGMOD Management Of Data, pages 1247–1250,
2008.

[24] M. Bollini, S. Tellex, T. Thompson, M. Roy, and D. Rus. Interpreting and
executing recipes with a cooking robot. In ISER, 2012.

[25] L. Bottou, Y. Bengio, and Y. LeCun. Global training of document process-
ing systems using graph transformer networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1997.

[26] W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human
activities. In Proceedings of the International Conference on Computer Vision,
2011.

[27] W. Byeon, T.M. Breuel, F. Raue, and M. Liwicki. Scene labeling with lstm
recurrent neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015.

[28] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S.B. Kiesler. Human
preferences for robot-human hand-over configurations. In Proceedings of
the IEEE/RSJ Conference on Intelligent Robots and Systems, 2011.

[29] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and
generalizing a task in a humanoid robot. Sys., Man, and Cybernetics, Part
B: Cybernetics, IEEE Trans. on, 2007.

[30] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M
Mitchell. Toward an architecture for never-ending language learning. In
Proceedings of the Association for the Advancement of Artificial Intelligence,
volume 5, page 3, 2010.

[31] L. C. Chen, G. Papandreou, I. Kokkinos, and K. Murphyand A. L. Yuille.
Semantic image segmentation with deep convolutional nets and fully con-
nected crfs. arXiv:1412.7062, 2014.

[32] L. C. Chen, A. Schwing, A. L. Yuille, and R. Urtasun. Learning deep

180

structured models. In Proceedings of the International Conference on Machine
Learning, 2015.

[33] M. Chen and A. Hauptmann. Mosift: Recognizing human actions in
surveillance videos. CMU Tech Report, 2009.

[34] X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting Visual Knowl-
edge from Web Data. In ICCV, 2013.

[35] X. Chen and C. L. Zitnick. Mind’s eye: A recurrent visual representa-
tion for image caption generation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[36] M. J-Y. Chung, M. Forbes, M. Cakmak, and R. Rao. Accelerating imita-
tion learning through crowdsourcing. In Proceedings of the International
Conference on Robotics and Automation, 2014.

[37] B. J. Cohen, S. Chitta, and M. Likhachev. Search-based planning for ma-
nipulation with motion primitives. In Proceedings of the International Con-
ference on Robotics and Automation, pages 2902–2908, 2010.

[38] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 2001.

[39] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3),
1995.

[40] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests for clas-
sification, regression, density estimation, manifold learning and semi-
supervised learning. MSR TR, 5(6), 2011.

[41] N. Curtis and J. Xiao. Efficient and effective grasping of novel objects
through learning and adapting a knowledge base. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems, 2008.

[42] Dave D. Ferguson and A. Stentz. Anytime rrts. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems, 2006.

[43] Hal Daumé Iii, John Langford, and Daniel Marcu. Search-based struc-
tured prediction. Machine learning, 75(3):297–325, 2009.

181

[44] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio. Rmsprop
and equilibrated adaptive learning rates for non-convex optimization.
arXiv:1502.04390, 2015.

[45] V. Delaitre, D. Fouhey, I. Laptev, J. Sivic, A. Gupta, and A. Efros. Scene
semantics from long-term observation of people. In Proceedings of the Eu-
ropean Conference on Computer Vision, 2012.

[46] J. Deng, W. Dong, R. Socher, L-J Li, K. Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2009.

[47] D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell. Contextual sequence pre-
diction with application to control library optimization. In Proceedings of
Robotics: Science and Systems, 2012.

[48] R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD
thesis, CMU, RI, August 2010.

[49] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[50] X.L. Dong, T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A
web-scale approach to probabilistic knowledge fusion. In Proceedings of
the ACM Special Interest Group on Knowledge Discovery and Data Mining,
2014.

[51] A. Doshi, B. Morris, and M. M. Trivedi. On-road prediction of driver’s
intent with multimodal sensory cues. IEEE Pervasive Computing, 2011.

[52] B. Douillard, D. Fox, and F. Ramos. A spatio-temporal probabilistic model
for multi-sensor multi-class object recognition. In Robotics Research, 2011.

[53] A. Dragan, K. Lee, and S. Srinivasa. Legibility and predictability of robot
motion. In Human Robot Interaction, 2013.

[54] A. Dragan and S. Srinivasa. Formalizing assistive teleoperation. In Pro-
ceedings of Robotics: Science and Systems, 2012.

182

[55] A. Dragan and S. Srinivasa. Generating legible motion. In Proceedings of
Robotics: Science and Systems, 2013.

[56] K. Driggs-Campbell, V. Shia, and R. Bajcsy. Improved driver modeling
for human-in-the-loop vehicular control. In Proceedings of the International
Conference on Robotics and Automation, 2015.

[57] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for
skeleton based action recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[58] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, and G. Üçoluk. To afford
or not to afford: A new formalization of affordances toward affordance-
based robot control. Adaptive Behavior, 15(4):447–472, 2007.

[59] L. H. Erickson and S. M. LaValle. Survivability: Measuring and ensuring
path diversity. In Proceedings of the International Conference on Robotics and
Automation, 2009.

[60] A. Ettlin and H. Bleuler. Randomised rough-terrain robot motion plan-
ning. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and
Systems, 2006.

[61] C. Fellbaum. WordNet. Wiley Online Library, 1998.

[62] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2008.

[63] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An
overview of the deepqa project. AI magazine, 31(3):59–79, 2010.

[64] D. A. Ferrucci. Introduction to this is watson. IBM J. of RnD, 56(3.4):1–1,
2012.

[65] L. Fletcher, N. Apostoloff, L. Petersson, and A. Zelinsky. Vision in and out
of vehicles. IEEE IS, 18(3), 2003.

[66] L. Fletcher, G. Loy, N. Barnes, and A. Zelinsky. Correlating driver gaze
with the road scene for driver assistance systems. Robotics and Autonomous
Systems, 52(1), 2005.

183

[67] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent network mod-
els for human dynamics. In Proceedings of the International Conference on
Computer Vision, 2015.

[68] B. Frohlich, M. Enzweiler, and U. Franke. Will this car change the
lane?turn signal recognition in the frequency domain. In IEEE Interna-
tional Vehicle Symposium Proceedings, 2014.

[69] A. G. Schwing G and R. Urtasun. Fully connected deep structured net-
works. arXiv:1503.02351, 2015.

[70] J. J. Gibson. The ecological approach to visual perception. Routledge, 1986.

[71] M. J. Gielniak, C. Karen Liu, and A. L. Thomaz. Generating human-like
motion for robots. International Journal of Robotics Research, 32(11), 2013.

[72] R. Girshick. Fast r-cnn. In Proceedings of the International Conference on
Computer Vision, 2015.

[73] C. Goller and A. Kuchler. Learning task-dependent distributed represen-
tations by backpropagation through structure. In Neural Networks, IEEE,
volume 1, 1996.

[74] D. Gossow, A. Leeperand D. Hershberger, and M. Ciocarlie. Interactive
markers: 3-d user interfaces for ros applications [ros topics]. Robotics &
Automation Magazine, IEEE, 18(4):14–15, 2011.

[75] A. Graves. Generating sequences with recurrent neural networks.
arXiv:1308.0850, 2013.

[76] A. Graves and N. Jaitly. Towards end-to-end speech recognition with re-
current neural networks. In Proceedings of the International Conference on
Machine Learning, 2014.

[77] C. J. Green and A. Kelly. Toward optimal sampling in the space of paths.
In Robotics Research, 2011.

[78] S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue,
and T. Darrell. Open-vocabulary object retrieval. In Proceedings of Robotics:
Science and Systems, 2014.

184

[79] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-object inter-
actions: Using spatial and functional compatibility for recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(10), 2009.

[80] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features
from RGB-D images for object detection and segmentation. In Proceedings
of the European Conference on Computer Vision, 2014.

[81] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, and A. Coates. Deepspeech: Scal-
ing up end-to-end speech recognition. arXiv:1412.5567, 2014.

[82] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T
Riedl. Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, 22(1), 2004.

[83] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-
term dependencies. In NIPS, 1995.

[84] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural com-
putation, 9(8), 1997.

[85] J. Hoffart, F. M Suchanek, K. Berberich, and G. Weikum. Yago2: a spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intel-
ligence, 194:28–61, 2013.

[86] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large
scale datasets and predictive methods for 3d human sensing in natural en-
vironments. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(7), 2014.

[87] M. E. Jabon, J. N. Bailenson, E. Pontikakis, L. Takayama, and C. Nass.
Facial expression analysis for predicting unsafe driving behavior. IEEE
Pervasive Computing, 2010.

[88] L. Jaillet, J. Cortés, and T. Siméon. Sampling-based path planning on
configuration-space costmaps. IEEE Transactions on Robotics, 26(4), 2010.

[89] A. Jain. Neuralmodels. https://github.com/asheshjain399/

NeuralModels, 2015.

185

https://github.com/asheshjain399/NeuralModels
https://github.com/asheshjain399/NeuralModels

[90] A. Jain, D. Das, J. Gupta, and A. Saxena. Planit: A crowdsourcing ap-
proach for learning to plan paths from large scale preference feedback. In
Proceedings of the International Conference on Robotics and Automation, 2015.

[91] A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena. Car that
knows before you do: Anticipating maneuvers via learning temporal
driving models. In Proceedings of the International Conference on Computer
Vision, 2015.

[92] A. Jain, H. S. Koppula, S. Soh, B. Raghavan, A. Singh, and A. Saxena.
Brain4cars: Car that knows before you do via sensory-fusion deep learn-
ing architecture. CoRR, abs/1601.00740, 2016.

[93] A. Jain, S. Sharma, T. Joachims, and A. Saxena. Learning preferences for
manipulation tasks from online coactive feedback. International Journal of
Robotics Research, 2015.

[94] A. Jain, S. Sharma, and A. Saxena. Beyond geometric path planning:
Learning context-driven user preferences via sub-optimal feedback. In
Proceedings of the International Symposium on Robotics Research, 2013.

[95] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena. Recurrent neu-
ral networks for driver activity anticipation via sensory-fusion architec-
ture. In Proceedings of the International Conference on Robotics and Automa-
tion, 2016.

[96] A. Jain, B. Wojcik, T. Joachims, and A. Saxena. Learning trajectory prefer-
ences for manipulators via iterative improvement. In Advances in Neural
Information Processing Systems, 2013.

[97] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep
learning on spatio-temporal graphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[98] M. Jain, J. C. van Gemert, T. Mensink, and C. Snoek. Objects2action: Clas-
sifying and localizing actions without any video example. In Proceedings
of the International Conference on Computer Vision, 2015.

[99] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the hidden
context for labeling 3d scenes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2013.

186

[100] Y. Jiang, M. Lim, and A. Saxena. Learning object arrangements in 3d
scenes using human context. In Proceedings of the International Conference
on Machine Learning, 2012.

[101] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new objects
in a scene. International Journal of Robotics Research, 31(9):1021–1043, 2012.

[102] T. Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the ACM Special Interest Group on Knowledge Discovery and Data
Mining, 2002.

[103] T. Joachims. Training linear svms in linear time. In Proceedings of the ACM
Special Interest Group on Knowledge Discovery and Data Mining, 2006.

[104] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural
svms. Machine Learning, 77(1):27–59, 2009.

[105] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately
interpreting clickthrough data as implicit feedback. In Proceedings of the
ACM SIGIR Conference on Information Retrieval, 2005.

[106] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Au-
tomatic detection of tracking failures. In Proceedings of the International
Conference on Pattern Recognition, 2010.

[107] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for
optimal motion planning. In Proceedings of Robotics: Science and Systems,
2010.

[108] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. International Journal of Robotics Research, 30(7):846–894, 2011.

[109] A. Karpathy, J. Johnson, and F. F. Li. Visualizing and understanding re-
current networks. arXiv:1506.02078, 2015.

[110] D. Katz, Y. Pyuro, and O. Brock. Learning to manipulate articulated ob-
jects in unstructured environments using a grounded relational represen-
tation. In Proceedings of Robotics: Science and Systems, 2008.

[111] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz. Per-
ceiving, learning, and exploiting object affordances for autonomous pile
manipulation. In Proceedings of Robotics: Science and Systems, 2013.

187

[112] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz. Per-
ceiving, learning, and exploiting object affordances for autonomous pile
manipulation. Autonomous Robots, 37(4), 2014.

[113] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecast-
ing. In Proceedings of the European Conference on Computer Vision, 2012.

[114] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng, and O. Khatib.
Grasping with application to an autonomous checkout robot. In Proceed-
ings of the International Conference on Robotics and Automation, 2011.

[115] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus. Ikeabot: An au-
tonomous multi-robot coordinated furniture assembly system. In Proceed-
ings of the International Conference on Robotics and Automation, 2013.

[116] J. Kober and J. Peters. Policy search for motor primitives in robotics. ML,
84(1), 2011.

[117] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Proceedings of the IEEE/RSJ Confer-
ence on Intelligent Robots and Systems, 2004.

[118] D. Koller and N. Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[119] H. Koppula, R. Gupta, and A. Saxena. Learning human activities and
object affordances from rgb-d videos. International Journal of Robotics Re-
search, 32(8), 2013.

[120] H. Koppula, A. Jain, and A. Saxena. Anticipatory planning for human-
robot teams. In ISER, 2014.

[121] H. Koppula and A. Saxena. Anticipating human activities using object
affordances for reactive robotic response. In Proceedings of Robotics: Science
and Systems, 2013.

[122] H. Koppula and A. Saxena. Learning spatio-temporal structure from rgb-
d videos for human activity detection and anticipation. In Proceedings of
the International Conference on Machine Learning, 2013.

[123] H. Koppula and A. Saxena. Anticipating human activities using object af-

188

fordances for reactive robotic response. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2015.

[124] H.S. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling
of 3d point clouds for indoor scenes. In Advances in Neural Information
Processing Systems, 2011.

[125] H.S. Koppula and A. Saxena. Physically grounded spatio-temporal object
affordances. In Proceedings of the European Conference on Computer Vision,
2013.

[126] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 2009.

[127] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs
with gaussian edge potentials. arXiv:1210.5644, 2012.

[128] H. Kretzschmar, M. Kuderer, and W. Burgard. Learning to predict trajec-
tories of cooperatively navigating agents. In Proceedings of the International
Conference on Robotics and Automation, 2014.

[129] F. R. Kschischang, B. J. Frey, and H-A. Loeliger. Factor graphs and the
sum-product algorithm. Information Theory, IEEE Trans., 47(2), 2001.

[130] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard. Feature-based
prediction of trajectories for socially compliant navigation. In Proceedings
of Robotics: Science and Systems, 2012.

[131] N. Kuge, T. Yamamura, O. Shimoyama, and A. Liu. A driver behavior
recognition method based on a driver model framework. Technical report,
SAE Technical Paper, 2000.

[132] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier. Learning-based ap-
proach for online lane change intention prediction. In IEEE International
Vehicle Symposium Proceedings, 2013.

[133] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning, 2001.

[134] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view

189

RGB-D object dataset. In Proceedings of the International Conference on
Robotics and Automation, 2011.

[135] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld. Learning realis-
tic human actions from movies. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[136] C. Laugier, I. E. Paromtchik, M. Perrollaz, MY. Yong, J-D. Yoder, C. Tay,
K. Mekhnacha, and A. Negre. Probabilistic analysis of dynamic scenes
and collision risks assessment to improve driving safety. ITS Magazine,
IEEE, 3(4), 2011.

[137] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Inter-
national Journal of Robotics Research, 20(5), May 2001.

[138] D. B Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Commun. ACM, 38(11):33–38, 1995.

[139] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps.
In Proceedings of Robotics: Science and Systems, 2013.

[140] P. Leven and S. Hutchinson. Using manipulability to bias sampling dur-
ing the construction of probabilistic roadmaps. IEEE Trans. on Robotics and
Automation, 19(6), 2003.

[141] S. Levine and V. Koltun. Continuous inverse optimal control with locally
optimal examples. In Proceedings of the International Conference on Machine
Learning, 2012.

[142] J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatio-
temporal video segmentation with long-range motion cues. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[143] S. Li, W. Zhang, and A. B. Chan. Maximum-margin structured learning
with deep networks for 3d human pose estimation. In Proceedings of the
International Conference on Computer Vision, 2015.

[144] Y. Li and R. Nevatia. Key object driven multi-category object recognition,
localization and tracking using spatio-temporal context. In Proceedings of
the European Conference on Computer Vision, 2008.

190

[145] M. Liebner, M. Baumann, F. Klanner, and C. Stiller. Driver intent infer-
ence at urban intersections using the intelligent driver model. In IEEE
International Vehicle Symposium Proceedings, 2012.

[146] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise training of deep struc-
tured models for semantic segmentation. arXiv:1504.01013, 2015.

[147] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation
via deep parsing network. In Proceedings of the International Conference on
Computer Vision, 2015.

[148] B. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 1981.

[149] J. Mainprice and D. Berenson. Human-robot collaborative manipulation
planning using early prediction of human motion. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems, 2013.

[150] J. Mainprice, E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami, and T. Siméon.
Planning human-aware motions using a sampling-based costmap plan-
ner. In Proceedings of the International Conference on Robotics and Automation,
2011.

[151] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth
grasp point detection based on multiple-view geometric cues with appli-
cation to robotic towel folding. In Proceedings of the International Conference
on Robotics and Automation, 2010.

[152] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval, volume 1. Cambridge University Press Cambridge, 2008.

[153] I. Matthews and S. Baker. Active appearance models revisited. Interna-
tional Journal of Computer Vision, 60(2), 2004.

[154] A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic program-
ming via imperatively defined factor graphs. In Advances in Neural Infor-
mation Processing Systems, 2009.

[155] C. McManus, B. Upcroft, and P. Newman. Scene signatures: Localised
and point-less features for localisation. In Proceedings of Robotics: Science
and Systems, 2014.

191

[156] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. A. Ranzato. Learn-
ing longer memory in recurrent neural networks. arXiv:1412.7753, 2014.

[157] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic
grasping. Robotics & Automation Magazine, IEEE, 11(4), 2004.

[158] D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions.
Proceedings of Robotics: Science and Systems, 2014.

[159] D.K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive
grounding of natural language to mobile manipulation instructions. In
Proceedings of Robotics: Science and Systems, 2014.

[160] A. R. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton,
and M. A. Picheny. Deep belief networks using discriminative features
for phone recognition. In (ICASSP), pages 5060–5063, 2011.

[161] L. Montesano, M. Lopes, A. Bernardino, and J. S.-Victor. Learning object
affordances: from sensory–motor coordination to imitation. IEEE Transac-
tions on Robotics, 2008.

[162] L. Morency, A. Quattoni, and T. Darrell. Latent-dynamic discriminative
models for continuous gesture recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2007.

[163] B. Morris, A. Doshi, and M. Trivedi. Lane change intent prediction for
driver assistance: On-road design and evaluation. In IEEE International
Vehicle Symposium Proceedings, 2011.

[164] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[165] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual robot
localization across seasons using network flows. In Proceedings of the As-
sociation for the Advancement of Artificial Intelligence, 2014.

[166] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal
deep learning. In Proceedings of the International Conference on Machine
Learning, 2011.

[167] NHTSA. 2012 motor vehicle crashes: overview. N. Highway Traffic Safety
Administration, Washington, D.C., Tech. Rep., 2013.

192

[168] S. Nikolaidis, P. Lasota, G. Rossano, C. Martinez, T. Fuhlbrigge, and
J. Shah. Human-robot collaboration in manufacturing: Quantitative eval-
uation of predictable, convergent joint action. In International Symposium
on Robotics, 2013.

[169] S. Nikolaidis and J. Shah. Human-robot teaming using shared mental
models. In HRI, Workshop on Human-Agent-Robot Teamwork, 2012.

[170] S. Nikolaidis and J. Shah. Human-robot cross-training: Computational
formulation, modeling and evaluation of a human team training strategy.
In IEEE/ACM ICHRI, 2013.

[171] N. Oliver and A. P. Pentland. Graphical models for driver behavior recog-
nition in a smartcar. In IEEE International Vehicle Symposium Proceedings,
2000.

[172] p. abbeel, a. coates, and a. y. ng. autonomous helicopter aerobatics
through apprenticeship learning. International Journal of Robotics Research,
29(13), 2010.

[173] R. Paolini, A. Rodriguez, S. S. Srinivasa, and M. T. Mason. A data-driven
statistical framework for post-grasp manipulation. In ISER, 2013.

[174] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recur-
rent neural networks. arXiv:1211.5063, 2012.

[175] M. Phillips, B. Cohen, S. Chitta, and M. Likhachev. E-graphs: Bootstrap-
ping planning with experience graphs. In Proceedings of Robotics: Science
and Systems, 2012.

[176] A. Pieropan, C. H. Ek, and H. Kjellström. Recognizing object affordances
in terms of spatio-temporal object-object relationships. In IEEE-RAS Intl.
Conf. on Humanoid Robots, 2014.

[177] A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for
object recognition. In Advances in Neural Information Processing Systems,
2004.

[178] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. Ros: an open-source robot operating system. In
ICRA Workshop on Open Source Software, 2009.

193

[179] K. Raman and T. Joachims. Learning socially optimal information systems
from egoistic users. In Proceedings of the European Conference on Machine
Learning, 2013.

[180] N. Ratliff. Learning to Search: Structured Prediction Techniques for Imitation
Learning. PhD thesis, CMU, RI, 2009.

[181] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning.
In Proceedings of the International Conference on Machine Learning, 2006.

[182] N. Ratliff, J. A. Bagnell, and M. Zinkevich. (online) subgradient methods
for structured prediction. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2007.

[183] N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional
gradient techniques for imitation learning. Autonomous Robots, 27(1):25–
53, 2009.

[184] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In Proceedings of
the International Conference on Robotics and Automation, 2009.

[185] M. Rezaei and R. Klette. Look at the driver, look at the road: No distrac-
tion! no accident! In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

[186] Matthew Richardson and Pedro Domingos. Markov logic networks. Ma-
chine Learning, 62(1-2), 2006.

[187] J. Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence,
193:45–86, 2012.

[188] S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell. Learning policies for
contextual submodular prediction. Proceedings of the International Confer-
ence on Machine Learning, 2013.

[189] M. Rouhizadeh, D. Bauer, R. E. Coyne, O. C. Rambow, and R. Sproat.
Collecting spatial information for locations in a text-to-scene conversion
system. Computational Models for Spatial Languages, 2011.

[190] T. Rueda-Domingo, P. Lardelli-Claret, J. Luna del Castillo, J. Jimenez-
Moleon, M. Garcia-Martin, and A. Bueno-Cavanillas. The influence of

194

passengers on the risk of the driver causing a car collision in spain: Anal-
ysis of collisions from 1990 to 1999. Accident Analysis & Prevention, 2004.

[191] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a
database and web-based tool for image annotation. IJCV, 77(1-3), 2008.

[192] M. S. Ryoo. Human activity prediction: Early recognition of ongoing ac-
tivities from streaming videos. In Proceedings of the International Conference
on Computer Vision, 2011.

[193] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects
using vision. International Journal of Robotics Research, 27(2):157–173, 2008.

[194] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula.
Robo brain: Large-scale knowledge engine for robots. In Proceedings of the
International Symposium on Robotics Research, 2015.

[195] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Find-
ing locally optimal, collision-free trajectories with sequential convex opti-
mization. In Proceedings of Robotics: Science and Systems, 2013.

[196] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 1994.

[197] Q. Shi, L. Cheng, L. Wang, and A. Smola. Human action segmentation
and recognition using discriminative semi-markov models. International
Journal of Computer Vision, 93(1), 2011.

[198] V. Shia, Y. Gao, R. Vasudevan, K. D. Campbell, T. Lin, F. Borrelli, and
R. Bajcsy. Semiautonomous vehicular control using driver modeling. IEEE
Transactions on Intelligent Transportation Systems, 15(6), 2014.

[199] P. Shivaswamy and T. Joachims. Online structured prediction via coactive
learning. In Proceedings of the International Conference on Machine Learning,
2012.

[200] B. Shneiderman and C. Plaisant. Designing The User Interface: Strategies for
Effective Human-Computer Interaction. Addison-Wesley Publication, 2010.

[201] D. Silver, J. A. Bagnell, and A. Stentz. Learning from demonstration for
autonomous navigation in complex unstructured terrain. International
Journal of Robotics Research, 2010.

195

[202] E. A. Sisbot and R. Alami. A human-aware manipulation planner.
Robotics, IEEE Transactions on, 28, 2012.

[203] E. A. Sisbot, L. F. Marin, and R. Alami. Spatial reasoning for human robot
interaction. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots
and Systems, 2007.

[204] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. A human aware
mobile robot motion planner. IEEE Transactions on Robotics, 2007.

[205] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing Natural Scenes
and Natural Language with Recursive Neural Networks. In Proceedings of
the International Conference on Machine Learning, 2011.

[206] S. Sra. A short note on parameter approximation for von mises-fisher
distributions: and a fast implementation of i s (x). Computational Statistics,
27(1), 2012.

[207] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learn-
ing of video representations using lstms. In Proceedings of the International
Conference on Machine Learning, 2015.

[208] A. Stopp, S. Horstmann, S. Kristensen, and F. Lohnert. Towards interac-
tive learning for manufacturing assistants. In Proceedings. 10th IEEE Inter-
national Workshop on RHIC., 2001.

[209] I. A. Sucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Li-
brary. IEEE Robotics & Automation Magazine, 19(4):72–82, 2012. http:

//ompl.kavrakilab.org.

[210] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In Proceedings of the International Conference on World Wide
Web, 2007.

[211] C. Sun and R. Nevatia. Active: Activity concept transitions in video event
classification. In Proceedings of the International Conference on Computer Vi-
sion, 2013.

[212] J. Sung, S. H. Jin, and A. Saxena. Robobarista: Object part-based transfer
of manipulation trajectories from crowd-sourcing in 3d pointclouds. In
Proceedings of the International Symposium on Robotics Research, 2015.

196

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

[213] I. Sutskever, G. Hinton, and G. Taylor. The recurrent temporal restricted
boltzmann machine. In Advances in Neural Information Processing Systems,
2009.

[214] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
2014.

[215] C. Sutton and A. McCallum. An introduction to conditional random
fields. Machine Learning, 4(4), 2011.

[216] K. Tamane, M. Revfi, and T. Asfour. Synthesizing object receiving motions
of humanoid robots with human motion database. In Proceedings of the
International Conference on Robotics and Automation, 2013.

[217] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2002.

[218] A. Tawari, S. Sivaraman, M. Trivedi, T. Shannon, and M. Tippelhofer.
Looking-in and looking-out vision for urban intelligent assistance: Esti-
mation of driver attentive state and dynamic surround for safe merging
and braking. In IEEE IVS, 2014.

[219] G. Taylor and G. E. Hinton. Factored conditional restricted boltzmann
machines for modeling motion style. In Proceedings of the International Con-
ference on Machine Learning, 2009.

[220] G. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. Dynamical binary latent
variable models for 3d human pose tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2010.

[221] G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion
using binary latent variables. In Advances in Neural Information Processing
Systems, 2006.

[222] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy. Asking for help using
inverse semantics. In Proceedings of Robotics: Science and Systems, 2014.

[223] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller,
and N. Roy. Understanding natural language commands for robotic nav-

197

igation and mobile manipulation. In Proceedings of the Association for the
Advancement of Artificial Intelligence, 2011.

[224] M. Tenorth, D. Nyga, and M. Beetz. Understanding and executing in-
structions for everyday manipulation tasks from the world wide web. In
ICRA, 2010.

[225] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[226] M. E. Tipping. Sparse bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1, 2001.

[227] C. Tomasi and T. Kanade. Detection and tracking of point features. Inter-
national Journal of Computer Vision, 1991.

[228] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time continuous pose
recovery of human hands using convolutional networks. ACM TOG,
33(5), 2014.

[229] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the
International Conference on Computer Vision, 2015.

[230] M. Trivedi, T. Gandhi, and J. McCall. Looking-in and looking-out of a ve-
hicle: Computer-vision-based enhanced vehicle safety. IEEE Transactions
on Intelligent Transportation Systems, 8(1), 2007.

[231] E. Ugur, E. Oztop, and E. Sahin. Goal emulation and planning in percep-
tual space using learned affordances. Robotics and Autonomous Systems,
2011.

[232] R. Urtasun, D. J. Fleet, A. Geiger, J. Popović, T. J. Darrell, and N. D.
Lawrence. Topologically-constrained latent variable models. In Proceed-
ings of the International Conference on Machine Learning, 2008.

[233] K. F. Uyanik, Y. Caliskan, A. K. Bozcuoglu, S. Kalkan O. Yuruten, and
E. Sahin. Learning social affordances and using them for planning. In
CogSys, 2013.

[234] D. L. Vail, M. M. Veloso, and J. D. Lafferty. Conditional random fields for
activity recognition. In AAMAS, 2007.

198

[235] R. Vasudevan, V. Shia, Y. Gao, R. Cervera-Navarro, R. Bajcsy, and F. Bor-
relli. Safe semi-autonomous control with enhanced driver modeling. In
American Control Conference, 2012.

[236] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko. Translating videos to natural language using deep recurrent
neural networks. arXiv:1412.4729, 2014.

[237] P. Vernaza and J. A. Bagnell. Efficient high dimensional maximum en-
tropy modeling via symmetric partition functions. In Advances in Neural
Information Processing Systems, 2012.

[238] P. Viola and M. J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2), 2004.

[239] M. Waibel, M. Beetz, R. D’Andrea, et al. Roboearth: A world wide web
for robots. IEEE R & A. Magz., 2011.

[240] H. Wang and C. Schmid. Action recognition with improved trajectories.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2013.

[241] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynami-
cal models for human motion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2), 2008.

[242] S. B. Wang, A. Quattoni, L. Morency, D. Demirdjian, and T. Darrell. Hid-
den conditional random fields for gesture recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2006.

[243] Y. Wang and Q. Ji. A dynamic conditional random field model for object
segmentation in image sequences. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[244] Z. Wang, K. Mülling, M. Deisenroth, H. Amor, D. Vogt, B. Schölkopf,
and J. Peters. Probabilistic movement modeling for intention inference
in human-robot interaction. International Journal of Robotics Research, 2013.

[245] A. Wilson, A. Fern, and P. Tadepalli. A bayesian approach for policy learn-
ing from trajectory preference queries. In Advances in Neural Information
Processing Systems, 2012.

199

[246] C. Wu, I. Lenz, and A. Saxena. Hierarchical semantic labeling for task-
relevant rgb-d perception. In RSS, 2014.

[247] X. Xiong and F. De la Torre. Supervised descent method and its applica-
tions to face alignment. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[248] X. Xiong and F. De la Torre. Supervised descent method for solving
nonlinear least squares problems in computer vision. arXiv preprint
arXiv:1405.0601, 2014.

[249] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Rossmann, and
G. Hirzinger. Making planned paths look more human-like in humanoid
robot manipulation planning. In Proceedings of the International Conference
on Robotics and Automation, 2011.

[250] C. Zhang and Z. Zhang. A survey of recent advances in face detection.
Technical report, Microsoft Research, 2010.

[251] N. Zhang, M. Paluri, M. A. Ranzato, T. Darrell, and L. Bourdev. Panda:
Pose aligned networks for deep attribute modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[252] X. Zhang, P. Jiang, and F. Wang. Overtaking vehicle detection using a
spatio-temporal crf. In IVS, IEEE, 2014.

[253] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. Torr. Conditional random fields as recurrent neural net-
works. In Proceedings of the International Conference on Computer Vision,
2015.

[254] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

[255] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell,
M. Hebert, A. K. Dey, and S. Srinivasa. Planning-based prediction for
pedestrians. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots
and Systems, 2009.

[256] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. .S. Srinivasa. Chomp: Covariant hamiltonian

200

optimization for motion planning. International Journal of Robotics Research,
32, 2013.

201

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Robots and humans: Interactive learning
	Spatio-temporal deep structures
	Sharing representations
	Applications
	First published appearances of the described contributions

	Learning Manipulation Trajectories from Iterative Improvements
	Beyond geometric path planning
	Previous works on learning to plan
	Coactive learning with incremental feedback
	Robot learning setup
	Feedback mechanisms

	Learning and feedback model
	Our approach
	Features describing object-object interactions
	Trajectory features
	Computing trajectory rankings
	Learning the scoring function

	Application on robots
	Experimental setup
	Results and discussion
	Comparison with fully-supervised algorithms
	Robotic experiment: User study in learning trajectories

	Conclusion

	Crowdsourcing Feedback for Path Planning
	Planning affordances
	Previous works on affordances and learning preferences
	Context-aware planning problem
	PlanIt: A crowdsourcing engine
	Learning algorithm
	Cost parameterization through affordance
	Generative model

	Experiments on PlanIt
	Baseline algorithms
	Evaluation metric
	Results
	Discriminative power of learned cost function
	Interpretability: Qualitative visualization of learned cost
	Robotic experiment

	Conclusion

	Anticipating Maneuvers From Implicit Driving Signals
	Motivation for maneuver anticipation
	Robotic anticipation
	Assistive cars and related works
	Maneuver anticipation
	Problem overview
	System overview

	Preliminaries
	Recurrent Neural Networks
	Long Short-Term Memory Cells

	Network architecture for anticipation
	RNN with LSTM units for anticipation
	Fusion-RNN: Sensory fusion RNN for anticipation
	Exponential loss-layer for anticipation.

	Features for anticipation
	Inside-vehicle features.
	Outside-vehicle features.

	Bayesian networks for maneuver anticipation
	Modeling driving maneuvers

	Evaluation on real world driving data
	Driving data set
	Baseline algorithms
	Evaluation protocol
	Quantitative results

	Conclusion

	Deep Learning on Spatio-Temporal Graphs
	Recurrent neural networks and spatio-temporal graphs
	Related deep architectures
	Structural-RNN architectures
	Representation of spatio-temporal graphs
	Structural-RNN from spatio-temporal graphs
	Training structural-RNN architecture

	Applications of Structural-RNN
	Human motion modeling and forecasting
	Going deeper into structural-RNN
	Human activity detection and anticipation
	Driver maneuver anticipation

	Conclusion

	Knowledge-Engine for Robots
	Why do robots need a knowledge engine?
	Related work
	Overview
	Knowledge engine formal definition
	System architecture
	Robot Query Library (RQL)
	Applications to path planning
	Use of knowledge engine as-a-service
	Improving path planning by knowledge sharing

	Discussion and conclusion

	Conclusion and Future Work
	Chapter 2 Appendix
	Proof for Average Regret
	Proof for Expected Regret

	Chapter 4 Appendix
	Modeling Maneuvers with AIO-HMM
	Learning AIO-HMM parameters
	Inference of Maneuvers

	Bibliography

